Где расположены капилляры. Некоторые сведения о капиллярах человека. Что такое капилляры

Пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.

Артериолы и венулы

Капилляры - самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7-8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, - это артериолы, а выносящие кровь мелкие вены - венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию - удерживают имеющуюся в органе кровь.

Шунты

Есть сосуды, напрямую связывающие артериолы и венулы, - артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.

Микроциркуляция

Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды - микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения - в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000-9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).

Строение капилляра

Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное - из тканей в кровь - поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра - не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.

История изучения капиллярной сети

Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.

Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.

Особенности строения микроциркуляторного русла

Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах - диаметр их составляет 4,5-6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки - 7-11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20-30 мкм.

Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки - около 2500-3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах - около 1400, а в коже всего 40 капилляров.

В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15-17 годам).

Функциональные характеристики капиллярной сети

Общая емкость капиллярного русла составляет 25-30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20-35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах - необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.

Особенности кровотока в капиллярах

Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80-130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.

При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25-50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.

Регулирование микроциркуляции крови

Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10-100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови - кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей - крупные артериолы и венулы.

Диагностика расстройств микроциркуляции крови

Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.

Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств - стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями - выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.

Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.

Развитие кровеносных сосудов.

Первичные кровеносные сосуды (капилляры) появляются на 2-3-ей неделе внутриутробного развития из мезенхимных кле­ток кровяных островков.

Динамические условия, определяющие развитие стенки сосуда.

Градиент кровяного давления и скорость кровотока, комбина­ция которых в различных частях тела обуславливает появление определенных типов сосудов.

Классификация и функция кровеносных сосудов. Их общий план строения.

3 оболочки: внутренняя; средняя; наружная.

Различают артерии и вены. Взаимосвязь между артериями и венами осуществляется сосудами микроциркулярного русла.

Функционально все кровеносные сосуды подразделяют на следующие типы:

1) сосуды кондукторного типа (проводящий от­дел) - магистральные артерии: аорта, легочная, сонная, подклю­чичная артерии;

2) сосуды кинетического типа, совокупность ко­торых называется периферическим сердцем: артерии мышечного типа;

3) сосуды регуляторного типа - «краны сосудистой системы», артериолы - поддерживают оптимальное кровяное давле­ние;

4) сосуды обменного типа - капилляры - осуществляют обмен веществ между тканью и кровью;

5) сосуды реверсионного типа - все разновидности вен - обеспечивают возврат крови к сердцу и ее депонирование.

Капилляры, их типы, строение и функция. Понятие о микроциркуляции.

Капилляр - тонкостенный кровеносный сосуд диаметром 3-30 мкм, всем своим существом погружен во внутреннюю среду.

Основные типы капилляров:

1) Соматический - между эндотелием плотные контакты, нет пиноцитозных пузырьков, микроворсинок; характерен для орга­нов с высоким обменом веществ (головной мозг, мышцы, легкие).

2) Висцеральный, фенестрированный - эндотелий местами истончен; характерен для органов эндокринной системы, почек.

3) Синусоидный, щелевидный - имеются сквозные отверстия между эндотелиоцитами; в органах кроветворения, печени.

Стенка капилляра построена:

Сплошной слой эндотелия; базальная мембрана, образован­ная коллагеном IV-V типов, погруженным в протеогликаны -фибронектин и ламинин; в расщеплениях (камерах) базальной мембраны лежат перициты; снаружи от них располагаются адвен-тициальные клетки.

Функции эндотелия капилляров:

1) Транспортная - активный транспорт (пиноцитоз) и пас­сивный (перенос О2и СО2).

2) Антикоагуляционная (противосвертывающая, антитромбогенная) - определяется гликокаликсом и простоциклином.

3) Релаксирующая (за счет секреции оксида азо­та) и констрикторная (превращение ангиотензина I в ангиотензин II и эндотелии).

4) Обменные функции (метаболизирует арахидо-новую кислоту, превращая в простагландины, тромбоксан и лейкотриены).

109. Типы артерий: строение артерий мышечного, смешанного и эластического типа.

По соотношению количества гладких мышечных клеток и эла­стических структур артерии делятся на:

1) артерии эластического типа;

2) артерии мышечно-эластического типа;

3) мышечного типа.

Стенка артерий мышечного типа построена так:

1) Внутренняя оболочка артерий мышечного типа состоит из эндотелия, подэндотелиального слоя, внутренней эластической мембраны.

2) Средняя оболочка - гладкие мышечные клетки, располо­женные косо-поперечно, и наружная эластическая мембрана.

3) Адвентициальная оболочка - плотная соединительная ткань, с косо и продольно лежащими коллагеновыми и эластичес­кими волокнами. В оболочке располагается нервно-регуляторный аппарат.

Особенности строения артерий эластичес­кого типа:

1) Внутренняя оболочка (аорта, легочная артерия) выстлана эндотелием крупного размера; в дуге аорты лежат двуядерные клетки. Субэндотелиальный слой хорошо выражен.

2) Средняя оболочка - мощная система окончатых эласти­ческих мембран, с косо расположенными гладкими миоцитами. Внутренняя и наружная эластические мембраны отсутствуют.

3) Адвентициальная соединительнотканная оболочка - хо­рошо развита, с крупными пучками коллагеновых волокон, вклю­чает собственные кровеносные сосуды микроциркулярного русла и нервный аппарат.

Особенности строения артерий мышечно-эластического типа:

Внутренняя оболочка имеет выраженный субэндотелий и внут­реннюю эластическую мембрану.

Средняя оболочка (сонная, подключичная артерии) имеет при­мерно равное количество гладких миоцитов, спирально ориентиро­ванных эластических волокон и окончатых эластических мембран.

Наружная оболочка - два слоя: внутренний, содержащий от­дельные пучки гладкомышечных клеток, и наружный - продоль­но и косо расположенные коллагеновые и эластические волокна.

В артериоле различают слабо выраженные три оболочки, харак­терные для артерий.

Особенности строения вен.

Классифиция вен:

1) Вены безмышечного типа - вены твердой и мягкой мозго­вой оболочки, сетчатки, костей, плаценты;

2) вены мышечного типа - среди них различают: вены с малым развитием мышеч­ных элементов (вены верхней части туловища, шеи, лица, верх­няя полая вена), с сильным развитием (нижняя полая вена).

Особенности строения вен безмышечного типа:

Эндотелий имеет извилистые границы. Отсутствует или сла­бо развит субэндотелиальный слой. Внутренняя и наружная элас­тические мембраны отсутствуют. Минимально развита средняя оболочка. Эластические волокна адвентиции немногочисленны, продольно направлены.

Особенности строения вен с малым развити­ем мышечных элементов:

Плохо развит подэндотелиальный слой; в средней оболочке небольшое количество гладких миоцитов, в наружной оболочке - единичные, продольно направленные гладкие миоциты.

Особенности строения вен с сильным развитием мы­шечных элементов:

Внутренняя оболочка слабо развита. Во всех трех оболочках обнаруживаются пучки гладких мышечных клеток; во внутренней и наружной оболочках - продольного направления, в средней - циркулярного. Адвентиция по толщине превышает внутреннюю и среднюю оболочку вместе взятых. В ней множество сосудисто-не­рвных пучков и нервных окончаний. Характерно присутствие ве­нозных клапанов - дубликатуры внутренней оболочки.

Марчелло Мальпиги (итальянский биолог и врач) открыл капилляры в 1678 году, тем самымзавершил описание замкнутой сосудистой системы.

Гемокапилляры, в зависимости от того, в каких органах они находятся, могут иметь различный диаметр.

Самые мел­кие капилляры (диаметр 4-7 мкм) находятся в поперечно-по­лосатых мышцах, легких, нервах;

более широкие капилляры (диаметр 8-11 мкм) - в коже и слизистых оболочках;

еще бо­лее широкие капилляры - синусоиды (диаметр 20-30 мкм) располагаются в органах кроветворения, эндокринных желе­зах, печени;

самые широкие капилляры - лакуны (диаметр более 30 мкм) располагаются в столбчатой зоне прямой киш­ки и в пещеристых телах полового члена.

Капилляры, переплетаясь друг с другом, образуют сеть. Кроме того, они могут иметь форму петли (в ворсинках ки­шечника, сосочках кожи, ворсинках капсул суставов). Конец капилляра, который отходит от артериолы, называется ар­териальным, а который впадает в венулу - венозным. Арте­риальный конец всегда уже, а венозный - шире, иногда в 2-2,5 раза. В эндотелиоцитах венозного конца больше ми­тохондрий и микроворсинок.

Капилляры могут образовывать клубочки (в почках). Капилляры могут отходить от артериолы и впадать в артериолу (приносящая и выносящая артериолы почек) или от­ходить от венулы и впадать в венулу (портальная система гипофиза). Если капилляры располагаются между двумя артериолами или двумя венулами, то это называется чудес­ной сетью (rete mirabile).

Количество капилляров на единицу объема в разных тка­нях может быть различным. Так, например, в скелетной мы­шечной ткани на площади сечения в 1 мм 2 встречается до 2000 срезов капилляров, в коже - около 40.

В каждой ткани есть примерно 50 % капилляров, находя­щихся в резерве. Эти капилляры называются нефункционирующими; они находятся в спавшемся состоянии, через них проходит только плазма крови. При повышении функцио­нальной нагрузки на орган часть нефункционирующих ка­пилляров превращается в функционирующие.

Стенка капилляров состоит из 3 слоев:

1) эндотелия, 2) слоя перицитов и 3) слоя адвентициальных клеток.

Слой эндотелия состоит из уплощенных клеток полиго­нальной формы различных размеров (длиной от 5 до 75 мкм). На люминальной поверхности (поверхности, обращенной в просвет сосуда), покрытой плазмолеммальным слоем (гликокаликсом), имеются микроворсинки, увеличивающие по­верхность клеток. Цитолемма эндотелиоцитов образует мно­жество кавеол, в цитоплазме - множество пиноцитозных пузырьков. Микроворсинки и пиноцитозные пузырьки явля­ются морфологическим признаком интенсивного обмена ве­ществ. В то же время цитоплазма бедна органеллами общего значения, имеются микрофиламенты, образующие цитоскелет клетки, на цитолемме есть рецепторы. Эндотелиоциты соединяются друг с другом при помощи интердигитаций и зон слипания. Среди эндотелиоцитов имеются фенестрированные, т. е. эндотелиоциты, у которых есть фенестры. Фенестрированные капилляры имеются в гипофизе и клубоч­ках почек. В цитоплазме эндотелиоцитов встречаются ЩФ и АТФаза. Эндотелиоциты венозного конца капилляра обра­зуют складки в виде клапанов, регулирующих кровоток.


Функции эндотелия многочисленны:

1) атромбогенная (отрицательный заряд гликокаликса и синтез ингибиторов- простагландинов, препятствующих агрегации тромбоцитов);

2) участие в образовании базальной мембраны;

3) барьерная, благодаря наличию цитоскелета и рецепторов;

4) участие в регуляции сосудистого тонуса, благодаря наличию рецепто­ров и синтезу факторов, расслабляющих/сокращающих миоциты сосудов;

5) сосудообразующая, благодаря синтезу факторов, ускоряющих пролиферацию и миграцию эндоте­лиоцитов;

6) секреция липопротеидлипазы и других веществ.

Базальная мембрана капилляров имеет толщину около 30 нм, в ней содержится АТФаза. Функция базальной мем­браны - обеспечение избирательной проницаемости (обмен­ная), барьерная. В некоторых капиллярах в базальной мем­бране имеются отверстия или щели.

Перициты располагаются в расщелинах базальной мем­браны, имеют отростчатую форму. Их цитоплазма способна к осмотическому набуханию – сдавливают просвет. В отростках есть сократи­тельные филаменты. Отростки перицитов охватывают ка­пилляр, на них заканчиваются эфферентные нервные окончания. Между перицитами и эндотелиоцитами имеются контакты. В том месте, где находится контакт, в базальной мембране есть отверстие.

Функции перицитов:

1) сократительная, благодаря нали­чию сократительных филаментов;

2) опорная, благодаря на­личию цитоскелета;

3) участие в регенерации, благодаря спо­собности дифференцироваться в гладкие миоциты;

4) кон­троль митоза эндотелиоцитов, благодаря контактам между перицитами и эндотелиоцитами;

5) участие в синтезе компо­нентов базальной мембраны, благодаря наличию грануляр­ной ЭПС.

Адвентициалъный слой представлен адвентициальными клетками, погруженными в аморфный матрикс вокруг ка­пилляра, в котором проходят тонкие коллагеновые и эласти­ческие волокна.

Классификация капилляров в зависимости от стро­ения их стенки. В настоящее время различают 3 типа капилляров:

1-й тип - капилляры с непрерывной выстилкой , соматические, характеризуются отсутствием фенестр в эндотелии и отверстий в базальной мембране - это капилляры скелетной мускулатуры, легких, нервных стволов, слизистых оболочек;

2-й тип - капилляры фенестрированного типа , характеризуются наличием фенестр в эндотелии и отсутствием отверстий в базальной мембране - это капил­ляры клубочков почек и ворсин кишечника;

3-й тип - капилляры синусоидного типа , пер­форированные, характеризуются наличием фенестр в эндо­телии и отверстий в базальной мембране- это синусоидные капилляры печени и органов кроветворения, благодаря боль­шой ширине которых (диаметр до 130-150 мкм), повышенной проницаемости стенки и замедленному току крови в органах кроветворения осуществляется миграция зрелых форменных элементов в про­свет синусоидов.

Функция капилляров - обмен веществ и газов между про­светом капилляров и окружающими тканями. Этому способ­ствуют 4 фактора:

1) тонкая стенка капилляров;

2) медленный ток крови (0,5 мм/с);

3) большая площадь соприкосновения с окружающими тканями (6000 м 2);

4) низкое внутрикапиллярное давление (20-30 мм рт. ст.).

Кроме этих четырех факто­ров интенсивность обмена веществ зависит от проницаемо­сти базальной мембраны капилляров и основного вещества окружающей соединительной ткани. Проницаемость повы­шается при воздействии гистамина и гиалуронидазы, разру­шающей гиалуроновую кислоту, что способствует повыше­нию обмена веществ. В змеином яде и яде ядовитых пауков содержится много гиалуронидазы, поэтому эти яды легко проникают в организм. Витамин С и ионы Са 2+ повышают плотность базальных мембран и основного межклеточного вещества.

Капилляры - это конечные разветвления кровеносных сосудов в форме эндотелиальных трубочек с весьма просто устроенной оболочкой. Так, внутренняя оболочка состоит только из эндотелия и базальной мембраны; средняя оболочка фактически отсутствует, а наружная оболочка представлена тонким перикапиллярным слоем рыхлой волокнистой соединительной ткани. Капилляры диаметром 3-10 мкм и длиной 200-1000 мкм образуют сильно разветвленную сеть между метартериолами и посткапиллярными венулами .


Капилляры - это места активного и пассивного транспорта различных субстанций, включая кислород и двуоксид углерода. Этот транспорт зависит от разных факторов, среди которых важную роль играет селективная проницаемость эндотелиальных клеток для некоторых специфических молекул.


В зависимости от строения стенок капилляры можно разделить на непрерывные, фенестрированные и синусоидные .


Самая характерная черта непрерывных капилляров - это их целостный (ненарушенный) эндотелий, состоящий из плоских эндотелиальных клеток (Энд), которые соединяются путем плотных контактов, или запирающих зон (33), zonulae occludentes, редко нексусами, а иногда десмосомами. Эндотелиальные клетки удлинены в направлении потока крови. В местах контакта они формируют цитоплазматические створки - краевые складки (КС), которые, возможно, выполняют функцию торможения потока крови около капиллярной стенки. Толщина эндотелиального слоя от 0,1 до 0,8 мкм, исключая область ядра.

Эндотелиальные клетки имеют плоские ядра, которые слегка выступают в просвет капилляра; клеточные органеллы достаточно развиты.


В цитоплазме эндотелиоцитов обнаруживаются несколько актиновых микрофиламентов и многочисленные микровезикулы (MB) диаметром 50-70 нм, которые иногда сливаются и образуют трансэндотелиальные каналы (ТК). Трансэндотелиальная транспортная функция в двух направлениях с помощью микровезикул значительно облегчается наличием микрофиламентов и образованием каналов. Четко видны отверстия (Отв) микровезикул и трансэндотелиальных каналов на внутренней и внешней поверхностях эндотелия.


Неровная, толщиной 20-50 нм базальная мембрана (БМ) располагается под эндотелиальными клетками; на границе с перицитами (Пе) она часто расщепляется на два листка (см. стрелки), которые окружают эти клетки с их отростками (О). Снаружи от базальной мембраны находятся обособленные ретикулярные и коллагеновые микрофибриллы (КМ), а также автономные нервные окончания (НО), соответствующие наружной оболочке.


Непрерывные капилляры обнаружены в бурой жировой ткани (см. рисунок), мышечной ткани, яичках, яичниках, легких, центральной нервной системе (ЦНС), тимусе, лимфатических узлах, костях и костном мозге.



Фенестрированные капилляры характеризуются очень тонким эндотелием, толщиной в среднем 90 нм и перфорированными многочисленными фенестрами (Ф), пли порами, диаметром 50-80 нм. Фенестры обычно закрыты диафрагмами толщиной 4-6 нм. На 1 мкм3 стенки насчитывается около 20-60 таких пор. Они часто группируются в так называемые ситообразные пластинки (СП). Эндотелиальные клетки (Энд) связаны между собой запирающими зонами (zonulae occludentes) и, редко, нексусами. Микровезикулы (Мв) обычно находятся в участках цитоплазмы эндотелиальных клеток, лишенных фенестр.

Эндотелиальные клетки имеют уплощенные, вытянутые околоядерные цитоплазматические зоны, которые слегка выпячиваются в просвет капилляра. Внутренняя структура эндотелиальных клеток идентична внутренней структуре таких же клеток в непрерывных капиллярах. Благодаря наличию в цитоплазме актиновых микрофиламентов эндотелиальные клетки могут сжиматься.


Базальная мембрана (БМ) имеет ту же толщину, что и в непрерывных капиллярах, она окружает наружную поверхность эндотелия. Вокруг фенестрированных капилляров перициты (Пе) встречаются реже, чем в непрерывных капиллярах, однако они также располагаются между двумя листками базальной мембраны (см. стрелки).


Ретикулярные и коллагеновые волокна (KB), а также автономные нервные волокна (не показаны) идут вдоль наружной стороны фенестрированных капилляров.


Фенестрированные капилляры обнаруживают преимущественно в почках, сосудистых сплетениях желудочков мозга, синовиальных мембранах, эндокринных железах. Обмен веществ между кровью и тканевой жидкостью значительно облегчается благодаря наличию таких внутриэндотелиальных фенестр.



Эндотелиальные клетки (Энд) синусоидных капилляров характеризуются наличием межклеточных и внутриклеточных отверстий (О) диаметром 0,5-3,0 мкм и фенестр (Ф) диаметром 50-80 нм, которые обычно формируются в форме ситообразных пластинок (СП).

Эндотелиальные клетки соединяются посредством нексусов и запирающих зон, zonulaе occludentes, а также с помощью перекрывающих зон (указано стрелкой).


Ядра эндотелиальных клеток уплощенные; цитоплазма содержит хорошо развитые органеллы, немного микрофиламентов, а в некоторых органах - заметное количество лизосом (Л) и микровезикул (Мв).


Базальная мембрана у этого типа капилляров почти полностью отсутствует, позволяя, таким образом, плазме крови и межклеточной жидкости свободно смешиваться, отсутствует барьер проницаемости.


В редких случаях встречаются перициты; нежные коллагеновые и ретикулярные волокла (РВ) образуют рыхлую сеть вокруг синусоидных капилляров.


Этот тип капилляров найден в печени, селезенке, гипофизе, корковом слое надпочечников. Предполагают, что эндотелиальные клетки синусоидных капилляров печени и костного мозга проявляют фагоцитарную активность.

КАПИЛЛЯРЫ (лат. capillaris волосной) - самые тонкостенные сосуды микроциркуляторного русла, по к-рым движется кровь и лимфа. Различают кровеносные и лимфатические капилляры (рис. 1).

Онтогенез

Клеточные элементы стенки капилляров и клетки крови имеют единый источник развития и возникают в эмбриогенезе из мезенхимы. Однако общие закономерности развития кровеносных и лимф. К. в эмбриогенезе изучены еще недостаточно. На протяжении онтогенеза кровеносные К. постоянно меняются, что выражается в запустевании и облитерации одних К. и новообразовании других. Возникновение новых кровеносных К. происходит путем выпячивания («почкования») стенки ранее образовавшихся К. Этот процесс происходит при усилении функции того или иного органа, а также при реваскуляризации органов. Процесс выпячивания сопровождается делением эндотелиальных клеток и увеличением размеров «почки роста». При слиянии растущего К. со стенкой предсуществующего сосуда происходит перфорация эндотелиальной клетки, расположенной на верхушке «почки роста», и соединение просветов обоих сосудов. Эндотелий капилляров, образующихся путем почкования, не имеет межэндотелиальных контактов и называется «бесшовным». К старости строение кровеносных К. существенно меняется, что проявляется уменьшением числа и размеров капиллярных петель, увеличением расстояния между ними, появлением резко извитых К., в которых сужения просвета чередуются с выраженными расширениями (Старческий варикоз, по Д. А. Жданову), а также значительным утолщением базальных мембран, дистрофией эндотелиальных клеток и уплотнением соединительной ткани, окружающей К. Эта перестройка вызывает снижение функций газообмена и питания тканей.

Кровеносные капилляры имеются во всех органах и тканях, они являются продолжением артериол, прекапиллярных артериол (прекапилляров) или, чаще, боковыми ветвями последних. Отдельные К., объединяясь между собой, переходят в посткапиллярные венулы (посткапилляры). Последние, сливаясь друг с другом, дают начало собирательным венулам, выносящим кровь в более крупные венулы. Исключением из этого правила у человека и млекопитающих являются синусоидные (с широким просветом) К. печени, расположенные между приносящими и выносящими венозными микрососудами, и клубочковые К. почечных телец, расположенные по ходу приносящих и выносящих артериол.

Кровеносные К. впервые обнаружил в легких лягушки М. Мальпиги в 1661 г.; спустя 100 лет Спалланцани (L. Spallanzani) нашел К. и у теплокровных животных. Открытие капиллярных путей транспорта крови завершило создание научно обоснованных представлений о замкнутой системе кровообращения, заложенных У. Гарвеем. В России начало систематическому изучению К. положили исследования Н. А. Хржонщевского (1866), А. Е. Голубева (1868), А. И. Иванова (1868), М. Д. Лавдовспого (1870). Существенный вклад в изучение анатомии и физиологии К. внес дат. физиолог А. Крог (1927). Однако наибольшие успехи в изучении структурно-функциональной организации К. были достигнуты во второй половине 20 в., чему способствовали многочисленные исследования, выполненные в СССР Д. А. Ждановым с сотр. в 1940-1970 гг., В. В. Куприяновым с сотр. в 1958-1977 гг., А. М. Чернухом с сотр. в 1966-1977 гг., Г. И. Мчедлишвили с сотр. в 1958- 1977 гг. и др., а за рубежом - Лен-дисом (E. М. Landis) в 1926-1977 гг., Цвейфахом (В. Zweifach) в 1936-1977 гг., Ренкином (E. М. Renkin) в 1952- 1977 гг., Паладе (G.E. Palade) в 1953- 1977 гг., Касли-Смитом (Т. R. Casley-Smith) в 1961-1977 гг., Видерхильмом (С. A. Wiederhielm) в 1966-1977 гг. и др.

Кровеносным К. принадлежит существенная роль в системе кровообращения; они обеспечивают транскапиллярный обмен - проникновение растворенных в крови веществ из сосудов в ткани и обратно. Неразрывная связь гемодинамической и обменной (метаболической) функций кровеносных К. находит выражение в их строении. По данным микроскопической анатомии, К. имеют вид узких трубок, стенки которых пронизаны субмикроскопическими «порами». Капиллярные трубки бывают относительно прямыми, изогнутыми или закрученными в клубочек. Средняя длина капиллярной трубки от прекапиллярной артериолы до посткапиллярной венулы достигает 750 мкм, а площадь поперечного сечения- 30 мкм 2 . Калибр К. в среднем соответствует диаметру эритроцита, однако в разных органах внутренний диаметр К. колеблется от 3-5 до 30-40 мкм.

Как показали электронно-микроскопические наблюдения, стенка кровеносного К., часто называемая капиллярной мембраной, состоит из двух оболочек: внутренней - эндотелиальной и наружной - базальной. Схематическое изображение строения стенки кровеносного К. представлено на рисунке 2, более детальное - на рисунках 3 и 4.

Эндотелиальная оболочка образована уплощенными клетками - эндотелиоцитами (см. Эндотелий). Число эндотелиоцитов, ограничивающих просвет К., обычно не превышает 2-4. Ширина эндотелиоцита колеблется от 8 до 19 мкм и длина - от 10 до 22 мкм. В каждом эндотелиоците выделяют три зоны: периферическую, зону органелл, ядросодержащую зону. Толщина этих зон и их роль в обменных процессах различны. Половину объема эндотелиоцита занимают ядро и органеллы - пластинчатый комплекс (комплекс Гольджи), митохондрии, зернистая и незернистая сеть, свободные рибосомы и полисомы. Органеллы сконцентрированы вокруг ядра, вместе с к-рым составляют трофический центр клетки. Периферическая зона эндотелиоцитов выполняет в основном обменные функции. В цитоплазме этой зоны располагаются многочисленные микропиноцитозные везикулы и фенестры (рис. 3 и 4). Последние представляют собой субмикроскопические (50-65 нм) отверстия, которые пронизывают цитоплазму эндотелиоцитов и бывают перекрыты истонченной диафрагмой (рис. 4, в, г), являющейся дериватом клеточной мембраны. Микропиноцитозные везикулы и фенестры, участвующие в трансэндотелиальном переносе макромолекул из крови в ткани и обратно, в физиологии называют крупными «норами». Каждый эндотелиоцит покрыт снаружи тончайшим слоем продуцируемых им гликопротеидов (рис. 4, а), последние играют немаловажную роль в поддержании постоянства микросреды, окружающей клетки эндотелия, и в адсорбции веществ, транспортируемых через них. В эндотелиальной оболочке соседние клетки объединяются с помощью межклеточных контактов (рис. 4, б), состоящих из цитолемм смежных эндотелиоцитов и межмембранных промежутков, заполненных гликопротеидами. Эти промежутки в физиологии чаще всего отождествляют с мелкими «порами», через которые проникают вода, ионы и белки с низким молекулярным весом. Пропускная способность межэндотелиальных промежутков различна, что объясняется особенностями их строения. Так, в зависимости от толщины интерцеллюлярной щели различают межэндотелиальные контакты плотного, щелевого и прерывистого типов. В плотных контактах интерцеллюлярная щель на значительном протяжении полностью облитерирована благодаря слиянию цитолемм смежных эндотелиоцитов. В щелевых контактах величина наименьшего расстояния между мембранами соседних клеток колеблется между 4 и 6 нм. В прерывистых контактах толщина межмембранных промежутков достигает 200 нм и более. Межклеточные контакты последнего типа в физиол, литературе также отождествляют с крупными «порами».

Базальная оболочка стенки кровеносного К. состоит из клеточных и неклеточных элементов. Неклеточный элемент представлен базальной мембраной (см.), окружающей эндотелиальную оболочку. Большинство исследователей рассматривает базальную мембрану как своеобразный фильтр толщиной 30-50 нм с размерами пор, равными - 5 нм, в к-ром сопротивление проникновению частиц возрастает с увеличением диаметра последних. В толще базальной мембраны расположены клетки - перициты; их называют адвентициальными клетками, клетками Руже, или интрамуральными перицитами. Перициты имеют вытянутую форму и изогнуты в соответствии с внешним контуром эндотелиальной оболочки; они состоят из тела и многочисленных отростков, которые оплетают эндотелиальную оболочку К. и, проникая через базальную мембрану, вступают в контакты с эндотелиоцитами. Роль этих контактов, так же как и функции перицитов, достоверно не выяснена. Высказано предположение об участии перицитов в регуляции роста эндотелиальных клеток К.

Морфологические и функциональные особенности кровеносных капилляров

Кровеносные К. разных органов и тканей обладают типовыми особенностями строения, что связано со спецификой функции органов и тканей. Принято различать три типа К.: соматический, висцеральный и синусоидный. Стенка кровеносных капилляров соматического типа характеризуется непрерывностью эндотелиальном и базальной оболочек. Как правило, она малопроницаема для крупных молекул белка, но легко пропускает воду с растворенными в ней кристаллоидами. К. такой структуры обнаружены в коже, скелетной и гладкой мускулатуре, в сердце и коре полушарий большого мозга, что соответствует характеру обменных процессов в этих органах и тканях. В стенке К. висцерального типа имеются окошки - фенестры. К. висцерального типа характерны для тех органов, которые секретируют и всасывают большие количества воды и растворенных в ней веществ (пищеварительные железы, кишечник, почки) или же участвуют в быстром транспорте макромолекул (эндокринные железы). К. синусоидного типа обладают большим просветом (до 40 мкм), что сочетается с прерывистостью их эндотелиальной оболочки (рис. 4, д) и частичным отсутствием базальной мембраны. К. этого типа обнаружены в костном мозге, печени и селезенке. Показано, что через их стенки легко проникают не только макромолекулы (напр., в печени, к-рая продуцирует основную массу белков плазмы крови), но и клетки крови. Последнее характерно для органов, участвующих в процессе кроветворения.

Стенка К. имеет не только общую природу и тесную морфол, связь с окружающей соединительной тканью, но связана с ней и функционально. Поступающая из кровеносного русла через стенку К. в окружающую ткань жидкость с растворенными в ней веществами и кислород переносятся рыхлой соединительной тканью ко всем остальным тканевым структурам. Следовательно, перикапиллярная соединительная ткань как бы дополняет собой микроциркуляторное русло. Состав и физ.-хим. свойства этой ткани в значительной мере определяют условия транспорта жидкости в тканях.

Сеть К. является значительной рефлексогенной зоной, посылающей к нервным центрам различные импульсы. По ходу К. и окружающей их соединительной ткани находятся чувствительные нервные окончания. По-видимому, среди последних значительное место занимают хеморецепторы, сигнализирующие о состоянии обменных процессов. Эффекторные нервные окончания у К. в большинстве органов не обнаружены.

Сеть К., образованная трубками малого калибра, где суммарные показатели поперечного сечения и площади поверхности значительно превалируют над длиной и объемом, создает наиболее благоприятные возможности для адекватного сочетания функций гемодинамики и транскапиллярного обмена. Характер транскапиллярного обмена (см. Капиллярное кровообращение) зависит не только от типовых особенностей строения стенок К.; не меньшее значение в этом процессе принадлежит связям между отдельными К. Наличие связей свидетельствует об интеграции К., а следовательно, и о возможности различного сочетания их функц, активности. Основной принцип интеграции К.- объединение их в определенные совокупности, составляющие единую функциональную сеть. Внутри сети положение отдельных К. неодинаково по отношению к источникам доставки крови и ее оттока (т. е. к прекапиллярным артериолам и посткапиллярным венулам). Эта неоднозначность выражается в том, что в одной совокупности К. связаны между собой последовательно, благодаря чему устанавливаются прямые коммуникации между приносящими и выносящими микро-сосудами, а в другой совокупности К. располагаются параллельно по отношению к К. указанной выше сети. Такие топографические различия К. обусловливают неоднородность распределения потоков крови в сети.

Лимфатические капилляры

Лимфатические капилляры (рис. 5 и 6) представляют собой систему замкнутых с одного конца эндотелиальных трубок, которые выполняют дренажную функцию - участвуют во всасывании из тканей фильтрата плазмы и крови (жидкости с растворенными в ней коллоидами и кристаллоидами), некоторых форменных элементов крови (лимфоцитов, эритроцитов), участвуют также в фагоцитозе (захват инородных частиц, бактерий). Лимф. К. отводят лимфу через систему интра- и экстраорганных лимф, сосудов в главные лимф, коллекторы - грудной проток и правый лимф. проток (см. Лимфатическая система). Лимф. К. пронизывают ткани всех органов, за исключением головного и спинного мозга, селезенки, хрящей, плаценты, а также хрусталика и склеры глазного яблока. Диаметр их просвета достигает 20-26 мкм, а стенка, в отличие от кровеносных К., представлена лишь резко уплощенными эндотелиоцитами (рис. 5). Последние примерно в 4 раза крупнее, чем эндотелиоциты кровеносных К. В клетках эндотелия, кроме обычных органелл и микропиноцитозных везикул, встречаются лизосомы и остаточные тельца - внутриклеточные структуры, возникающие в процессе фагоцитоза, что объясняется участием лимф. К. в фагоцитозе. Другая особенность лимф. К. заключается в наличии «якорных», или «стройных», филаментов (рис. 5 и 6), осуществляющих фиксацию их эндотелия к окружающим К. коллагеновым протофибриллам. В связи с участием в процессах всасывания межэндотелиальные контакты в их стенке имеют различное строение. В период интенсивной резорбции ширина межэндотелиальных щелей увеличивается до 1 мкм.

Методы исследования капилляров

При изучении состояния стенок К., формы капиллярных трубок и пространственных связей между ними широко используют инъекционные и безынъекционные методики, различные способы реконструкции К., трансмиссионную и растровую электронную микроскопию (см.) в сочетании с методами морфометрического анализа (см. Морфометрия медицинская) и математического моделирования; для прижизненного исследования К. в клинике применяют микроскопию (см. Капилляроскопия).

Библиография: Алексеев П. П. Болезни мелких артерий, капилляров и артериовенозных анастомозов, Л., 1975, библиогр.; Казначеев В. П. и Дзизинский А. А. Клиническая патология транскапиллярного обмена, М., 1975, библиогр.; Куприянов В. В., Караганов Я. JI. и Козлов В. И. Микроциркуляторное русло, М., 1975, библиогр.; Фолков Б. и Нил Э. Кровообращение, пер. с англ., М., 1976; Чернух А. М., Александров П. Н. иАлексеев О. В. Микроциркуляции, М., 1975, библиогр.; Шахламов В. А. Капилляры, М., 1971, библиогр.; Шошенко К. А. Кровеносные капилляры, Новосибирск, 1975, библиогр.; Hammersen F. Anato-mie der terminalen Strombahn, Miinchen, 1971; К г о g h A. Anatomie und Physio-logie der Capillaren, B. u. a., 1970, Bibliogr.; Microcirculation, ed. by G. Kaley a. B. M. Altura, Baltimore a. o., 1977; Simionescu N., SimionescuM. a. P a I a d e G. E. Permeability of muscle capillaries to small heme peptides, J. cell. Biol., v. 64, p. 586, 1975; Z w e i-fach B. W. Microcirculation, Ann. Rev. Physiol., v. 35, p. 117, 1973, bibliogr.

Я. Л. Караганов.

2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.