Что такое мат ожидание. Математическое ожидание и дисперсия случайной величины

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Задача 1. Вероятность всхожести семян пшеницы равна 0,9. Какова вероятность того, что из четырех посеянных семян взойдут не менее трех?

Решение. Пусть событие А – из 4 семян взойдут не менее 3 семян; событие В – из 4 семян взойдут 3 семени; событие С – из 4 семян взойдут 4 семени. По теореме сложения вероятностей

Вероятности
и
определим по формуле Бернулли, применяемой в следующем случае. Пусть проводится серия п независимых испытаний, при каждом из которых вероятность наступления события постоянна и равна р , а вероятность ненаступления этого события равна
. Тогда вероятность того, что событие А в п испытаниях появится ровно раз, вычисляется по формуле Бернулли

,

где
– число сочетаний из п элементов по . Тогда

Искомая вероятность

Задача 2. Вероятность всхожести семян пшеницы равна 0,9. Найти вероятность того, что из 400 посеянных семян взойдут 350 семян.

Решение. Вычислить искомую вероятность
по формуле Бернулли затруднительно из-за громоздкости вычислений. Поэтому применим приближенную формулу, выражающую локальную теорему Лапласа:

,

где
и
.

Из условия задачи . Тогда

.

Из таблицы 1 приложений находим . Искомая вероятность равна

Задача 3. Среди семян пшеницы 0,02% сорняков. Какова вероятность того, что при случайном отборе 10000 семян будет обнаружено 6 семян сорняков?

Решение. Применение локальной теоремы Лапласа из-за малой вероятности
приводит к значительному отклонению вероятности от точного значения
. Поэтому при малых значениях р для вычисления
применяют асимптотическую формулу Пуассона

, где .

Эта формула используется при
, причем чем меньше р и больше п , тем результат точнее.

По условию задачи
;
. Тогда

Задача 4. Процент всхожести семян пшеницы равен 90%. Найти вероятность того, что из 500 посеянных семян взойдут от 400 до 440 семян.

Решение. Если вероятность наступления события А в каждом из п испытаний постоянна и равна р , то вероятность
того, что событие А в таких испытаниях наступит не менее раз и не более раз определяется по интегральной теореме Лапласа следующей формулой:

, где

,
.

Функция
называется функцией Лапласа. В приложениях (табл. 2) даны значения этой функции для
. При
функция
. При отрицательных значениях х в силу нечетности функции Лапласа
. Используя функцию Лапласа, имеем:

По условию задачи . По приведенным выше формулам находим
и :

Задача 5. Задан закон распределения дискретной случайной величины Х :

    1. Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение.

Решение. 1) Если закон распределения дискретной случайной величины задан таблицей

    1. Где в первой строке даны значения случайной величины х, а во второй – вероятности этих значений, то математическое ожидание вычисляется по формуле

2) Дисперсия
дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е.

Эта величина характеризует среднее ожидаемое значение квадрата отклонения Х от
. Из последней формулы имеем

Дисперсию
можно найти другим способом, исходя из следующего ее свойства: дисперсия
равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания
, то есть

Для вычисления
составим следующий закон распределения величины
:

3) Для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения вводится среднее квадратическое отклонение
случайной величины Х , равное квадратному корню из дисперсии
, то есть

.

Из этой формулы имеем:

Задача 6. Непрерывная случайная величина Х задана интегральной функцией распределения

Найти: 1) дифференциальную функцию распределения
; 2) математическое ожидание
; 3) дисперсию
.

Решение. 1) Дифференциальной функцией распределения
непрерывной случайной величины Х называется производная от интегральной функции распределения
, то есть

.

Искомая дифференциальная функция имеет следующий вид:

2) Если непрерывная случайная величина Х задана функцией
, то ее математическое ожидание определяется формулой

Так как функция
при
и при
равна нулю, то из последней формулы имеем

.

3) Дисперсию
определим по формуле

Задача 7. Длина детали представляет собой нормально распределенную случайную величину с математическим ожиданием 40 мм и средним квадратическим отклонением 3 мм. Найти: 1) вероятность того, что длина произвольно взятой детали будет больше 34 мм и меньше 43 мм; 2) вероятность того, что длина детали отклонится от ее математического ожидания не более чем на 1,5 мм.

Решение. 1) Пусть Х – длина детали. Если случайная величина Х задана дифференциальной функцией
, то вероятность того, что Х примет значения, принадлежащие отрезку
, определяется по формуле

.

Вероятность выполнения строгих неравенств
определяется той же формулой. Если случайная величина Х распределена по нормальному закону, то

, (1)

где
– функция Лапласа,
.

В задаче . Тогда

2) По условию задачи , где
. Подставив в (1) , имеем

. (2)

Из формулы (2) имеем.

Т.е., если сл. величина имеет закон распределения, то

называется её математическим ожиданием. Если сл. величина имеет бесконечное число значений, то математическое ожидание определяется суммой бесконечного ряда , при условии, что этот ряд абсолютно сходится (в противном случае говорят, что математическое ожидание не существует).

Для непрерывной сл. величины, заданной функцией плотности вероят-ности f(x), математическое ожидание определяется в виде интеграла

при условии, что этот интеграл существует (если интеграл расходится, то говорят, что математическое ожидание не существует).

Пример 1 . Определим математическое ожидание случайной величины распределённой по закону Пуассона . По определению

или обозначим

,

Значит, параметр , определяющий закон распределения пуассоновской случайной величины равен среднему значению этой величины.

Пример 2 . Для случайной величины, имеющей показательный закон распределения , математическое ожидание равно

():

(в интеграле пределы взять, с учётов того. что f (x) отлична от нуля только при положительных x).

Пример 3 . Случайнаявеличина, распределенная по закону распределения Коши , не имеет среднего значения. Действительно

Свойства математического ожидания .

Свойство 1 . Математическое ожидание постоянной равно самой этой постоянной.

Постоянная С принимает это значение с вероятностью единица и по определению М(С)=С×1=С

Свойство 2 . Математическое ожидание алгебраической суммы случайных величин равно алгебраической суме их математических ожиданий.

Ограничимся доказательством этого свойства только для суммы двух дискретных случайных величин, т.е. докажем, что

Под суммой двух дискретных сл. Величин понимается сл. Величина, которая принимает значения с вероятностями

По определению

где вероятность события , вычисленная при условии, что . В правой части последнего равенства перечислены все случаи появления события , поэтому равна полной вероятности появления события , т.е. . Аналогично . Окончательно имеем

Свойство 3 . Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

У
Q
Х
Р

Приведем доказательства этого свойства только для дискретных величин. Для непрерывных случайных величин оно доказывается аналогично.


Пусть Х и У независимы и имеют законы распределения

Произведением этих случайных величин будет случайная величина, которая принимает значения с вероятностями равными, в силу независимости случайных величин, . Тогда

Следствие . Постоянныймножитель можно выносить за знак матема-тического ожидания. Так век постоянная С не зависит от того какое значение примет сл. величина X, то по свойству 3. имеем

М(СХ)=М(С)×М(Х)=С×М(Х)

Пример . Если a и b постоянные, то М(ах+b)=аМ(х)+b.

Математическое ожидание числа появления события в схеме независимых испытаний.

Пусть производится n независимых опытов, ве-роятность появления события в каждом из которых равна Р. Чис-ло появлений события в этих n опытах является случайной величиною Х распределённой по биномиальному закону. Однако, непосредственное вычисление её среднего значения громоздко. Для упрощения воспользуемся разложением, которым будем пользоваться в дальнейшем неоднократно: Число появления события в n опытах состоит изчисла появлений события в отдельных опытах, т.е.

где имеет закон распределения (принимает значение 1, если событие в данном опыте произошло, и значение 0, если событие в данном опыте не появилось).

Р 1-р р

Поэтому

т.е. среднее число появлений события в n независимых опытах равно произведению числа опытов на вероятность появления события в одном опыте.

Например, если вероятность попадания в цель при одном выстреле равна 0,1, то среднее число попадания в 20 выстрелах равно 20×0,1=2.

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }
2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.