Холодный ядерный синтез в живой клетке

И способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

Что такое ядерные реакции

Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

Немного истории ядерных реакций

Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

Типичная формула ядерной реакции.

Какие ядерные реакции есть в физике

В целом известные на сегодняшний день ядерные реакции можно разделить на:

  • деление атомных ядер
  • термоядерные реакции

Ниже детально напишем о каждой из них.

Деление атомных ядер

Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома , продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

Вот так она выглядит на схеме.

При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо — температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Ядерные реакции, видео

И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

1. Реакции возможны при наличии высоких температур и высоких электромагнитных полях

2. Прохождение процессов за счёт нейтронов, не требующих больших магнитных полей и высоких температур

Нуклеосинтез. Явление нуклеосинтеза исследовал учёный Бербидж .

В момент образования Вселенной существовала смесь электронных частиц .

За счёт взаимодействия протонов и нейтронов образовались водород и гелий , при чём в следующих пропорциях: 2/3 – Н, 1/3 – Не.

Все остальные элементы образовались из водорода.

Солнце состоит из гелия и водорода (10-20 млн. ºС).

Существуют более горячие звёзды (более 150 млн. ºС). В глубинах этих планет образовались углерод, кислород, азот, сера и магний .

Другие элементы возникли при взрыве сверхновых звёзд (уран и более тяжелые).

Во всей Вселенной наиболее распространены гелий и водород (3/4 водорода и 1/4 гелия).

○ Самые распространённые элементы на Земле:

§7 «Корпускулярно-волновая (двойственная) теория»

В 1900 г. М. Планк выдвинул теорию: абсолютно чёрное тело тоже излучает энергию, но излучает её порциями (квантами).

● Квант электронно-магнитного поля – это фотон .

Волновая природа фотона:

- дифракция (отклонение света от прямолинейного направления, или способность огибать препятствия)

- интерференция (взаимодействие волн, при котором волны могут накладываться друг на друга и либо усиливать, либо гасить друг друга)

1.Усиливаются

2.Уменьшается интенсивность

3.Погашаются

Корпускулярная природа фотона:

Фотоэффект – явление испускания электронов веществом под действием электромагнитного излучения.

Столетов изучил законы фотоэлемента.

Объяснение фотоэффекта было дано Эйнштейном в рамках корпускулярной теории.

Фотон, ударяясь об электрон, передаёт часть своей энергии.

Эффект Комптона – если направить на вещество рентгеновское излучение, то оно рассеивается на электроны вещества. Это рассеянное излучение будет обладать большей длинной волны, чем падающее. Разница зависит от угла рассеяния.

E =

h – планка

υ – частота излучения

●Фотон – волновой пакет .

Математически дуализм «волна – частица» выражается в уравнении Л. де Бройля :

λ = h / (m · v ) = h / P

P – импульс

Этот дуализм – универсальная теория, её можно распределять на все виды материи.

Примеры:

Электрон

m e = 9,1 · 10 -28 г v ~ 10 8 см/с λ ~ 10 -8 см

Летящий мячик

m = 50 г v ~ 25 см/с λ ~ 10 -32 см

1) Принцип неопределённости [В. Гейзенберг] – невозможно одновременно точно определить координату частицы и её импульс.

q · ∆ p h / 2

q неопределённость любой координаты

p неопределённость импульса

E · ∆ t h / 2

E энергия частицы

t неопределённость времени

2) Принцип дополнительности [Н. Бор] – получение экспериментальной информации об одних величинах, описывающих микрообъект, неизбежно связано с потерей информации о других величинах, дополнительных к первому.

3) Принцип причинности (следствие принципа неопределённости) – принцип классической физики. Имеется причинно-следственная связь между явлениями природы. Для объектов микромира принцип причинности не применим.

4) Принцип тождественности – невозможно экспериментально изучить одинаковые микрочастицы.

5) Принцип соответствия – всякая более общая теория, являясь развитием классической теории, не отвергает её полностью, а указывает границы её применения.

6) Принцип суперпозиции – результирующий эффект – это сумма эффектов, вызываемых каждым явлением в отдельности.

Уравнение Шредингера – основное уравнение квантовой механики.

Волновая функция [Ψ] – это функция одновременно координат и времени.

Е = Е кин. + U

U потенциальная энергия

E кин . = (m · v 2 ) / 2 = p 2 / 2m

E = p 2 / 2m + U

E Ψ = ( p 2 / 2 m + U ) · Ψ

2 · d · v ) показывает где и в каком состоянии находится соответствующая частица.

Как и химические реакции, ядерные реакции могут быть эндотермическим и экзотермическим .

Ядерные реакции подразделяются на реакции распада и реакции синтеза. Особым типом ядерной реакции является деление ядра . Сроки распад ядра и деление ядра означают совершенно разные типы реакций [ ].


1. История

Первую искусственно вызванной ядерной реакции наблюдал в году Эрнест Резерфорд , облучая альфа-частицами азот . Реакция проходила по схеме

.

2. Законы сохранения при ядерных реакциях

Во время ядерных реакций выполняются общие законы сохранения энергии , импульса , момента импульса и электрического заряда .

Кроме того, существует ряд особых законов сохранения, присущих ядерной взаимодействия, например, закон сохранения барионного заряда.


3. Энергетический выход ядерной реакции

Если сумма масс покоя частиц в реакции больше суммы масс покоя частиц после реакции, то такая реакция происходит с выделением энергии. Такую энергию называют энергетическим выходом ядерной реакции. Энергетический выход ядерной реакции вычисляется по формуле ΔE = Δmc 2, где Δm - дефект массы , c - скорость света .

4. Виды ядерных реакций

4.1. Ядерные реакции синтеза

Во время ядерных реакций синтеза из легких ядер элементов образуются новые, более тяжелые ядра.

Обычно реакции синтеза возможны только в условиях, когда ядра имеют большую кинетическую энергию, поскольку силы электростатического отталкивания препятствуют сближению одинаково заряженных ядер, создавая так называемый кулоновский барьер.

Искусственным путем этого удается достичь с помощью ускорителей заряженных частиц , в которых ионы, протоны или α-частицы ускоряют электрическим полем, или термоядерных реакторов, где ионы вещества приобретают кинетической энергии за счет теплового движения. В последнем случае речь ведут о реакции термоядерного синтеза.


4.1.1. Ядерный синтез в природе

В природе реакции синтеза начались в первые минуты после Большого взрыва . Во время первичного нуклеосинтеза из протонов образовались лишь некоторые легкие ядра (дейтерия , гелия , лития).
Сейчас ядерные реакции происходят в ядрах звезд, например, в Солнце . Основным процессом является образование ядра гелия из четырех протонов, что может происходить или в протон-протонном цепочке , или в цикле Бете-Вайцзекера .

В звездах, масса которых превышает половину M ☉ , могут образовываться и другие, более тяжелые элементы. Этот процесс начинается с образования ядер углерода в тройной α-реакции . Образующиеся ядра взаимодействуют с протонами и α-частицами и, таким образом, образуются химические элементы до железного пика.

Образование тяжелых ядер (от железа в Висмут) происходит в оболочках достаточно массивных звезд на стадии красного гиганта основном благодаря s-процесса и, частично, благодаря p-процесса . Наважчи (нестабильные) ядра образуются во время вспышек сверхновых .


4.2. Ядерные реакции распада

Реакциями распада обусловлено альфа-и бета-радиоактивность. При альфа-распаде из ядра вылетает альфа-частица 4 He, а массовое число и зарядовое числа ядра меняются на 4 и 2 соответственно. При бета-распаде из ядра вылетает электрон или позитрон, массовое число ядра не меняется, а зарядовое увеличивается или уменьшается на 1. Оба типа распада происходят спонтанно.


4.3. Деление ядра

Небольшое количество изотопов способна к делению - реакции при которой ядро ​​делится на две большие части. Деление ядра может происходить как спонтанно, так и вынужденно - под воздействием других частиц, в основном - нейтронов.

Года было выявлено, что ядра урана-235 способны не только к спонтанному делению (на два легких ядра) с выделением ~ 200 МэВ энергии и излучением двух-трех нейтронов, но и к вынужденного деления, инициируемое нейтронами. Учитывая, что в результате такого разделения тоже излучаются нейтроны, которые могут вызвать новые реакции вынужденного деления соседних ядер урана, стала очевидной возможность цепной ядерной реакции. Такая реакция не происходит в природе лишь потому, что природный уран на 99,3% состоит из изотопа урана-238, а в реакции деления способен только уран-235, которого в природном уране содержится всего 0,7%.

Механизм ядерной реакции деления заключается в следующем. Ядерные силы через взаимодействие обменными виртуальными частицами (в большинстве случаев происходит пион -нуклонного взаимодействие), имеют нецентральных характер. Это означает, что нуклоны не могут взаимодействовать одновременно со всеми нуклонами в ядре, особенно в багатонуклонних ядрах. При большом количестве нуклонов в ядре это вызывает асимметрию плотности ядерных сил и дальнейшей асимметрию нуклонного связи, а следовательно, и асимметрию энергии по объему ядра. Ядро приобретает форму, которая существенно отличается от шарообразной. В таком случае электростатическое взаимодействие между протонами может по величине энергии приближаться к сильного взаимодействия.

Таким образом, вследствие асимметрии, энергетический барьер деления преодолевается, и ядро ​​распадается на более легкие ядра, асимметричные по массе.

Иногда ядро ​​может туннелировать в состояние с меньшей энергией.


5. Ядерные реакции в жизни человека

5.1. Атомная бомба

Цепную реакцию деления атомных ядер в ХХ веке стали применять в атомных бомбах. Из-за того, что для интенсивной ядерной реакции необходимо иметь критическую массу (массу, необходимую для развития цепной реакции), то для осуществления атомного взрыва несколько частей с массами меньше критической, соединяются, образуется сверхкритическая масса и в ней возникает цепная реакция деления, сопровождающаяся высвобождением большого количества энергии - происходит атомный взрыв.


5.2. Ядерный реактор

Для преобразования тепловой энергии распада ядер в электрическую энергию используют ядерный реактор. Как топливо в реакторе применяется смесь изотопов урана-235 и урана-238 или плутоний-239. При попадании быстрых нейтронов к ядру атома урана-238 происходит его превращение в плутоний -239 и его последующий распад с высвобождением энергии. Процесс может быть циклическим, однако для этого необходимы реакторы, работающие на быстрых нейтронах. Сейчас же как основной компонент в реакторах применяется нуклид урана-235. Для его взаимодействия с быстрыми нейтронами необходимо их замедление. Как замедлитель применяют:

По типу используемой воды в реакторах, D 2 O или H 2 O, реакторы делятся на тяжеловодных и легководяни соответственно. В тяжеловодных реакторах в качестве горючего используется нуклид урана-238, в легководяних - Уран-235. Для управления реакцией распада и ее прекращения применяют регулировочные стержни, содержащие изотопы бора или кадмия . Энергию, которая выделяется во время цепной реакции деления, выводит теплоноситель. Поэтому он нагревается, и при попадании в воду он нагревает ее, превращая в пар (часто теплоносителем является сама вода). Пара обращает паровую турбину, которая вращает ротор генератора переменного тока.


Это незавершенная статья физики .
Вы можете проекту,

РЕАКЦИИ ЯДЕРНЫЕ В ПРИРОДЕ - разделяются на 2 класса: термоядерные реакции и реакции под действием ядерноактивных частиц и деления ядер. Первые требуют для своего осуществления температуру ~ несколько млн. градусов и протекают лишь в недрах звезд или при взрывах H-бомб. Вторые происходят в атмосфере и литосфере за счет космического облучения и за счет ядерноактивных частиц в верхних оболочках Земли. Быстрые космические частицы (средняя энергия ~2 10 9 эв), попадая в атмосферу Земли, вызывают нередко полное расщепление атомов атмосферы (N, О) на более легкие ядерные осколки, включая нейтроны. Скорость образования последних достигает величины 2,6 нейтрона (см -2 сек -1). Нейтроны взаимодействуют преимущественно с N атмосферы, обеспечивая постоянное образование радиоактивных изотопов углерода С 14 (T 1/2 = 5568 лет) и трития H 3 (T 1/2 = 12,26 лет) по следующим реакциям N 14 + п = С 14 + Н 1 ; N 14 + n = С 12 + Н 3 . Ежегодное образование радиоуглерода в земной атмосфере составляет около 10 кг. Отмечено также образование в атмосфере радиоактивных Be 7 и Cl 39 . Реакции ядерные в литосфере происходят в основном за счет α-частиц и нейтронов, возникающих при распаде долгоживущих радиоактивных элементов (в основном U и Th). Следует отметить накопление Не 3 в некоторых м-лах, содержащих Li (см. Изотопы гелия в геологии), образование отдельных изотопов неона в эвксените, монаците и др. м-лах по реакциям: О 18 + Не 4 = Ne 21 + п; Fe 19 + Не = Na 22 + п; Na 22 → Ne 22 . Образование изотопов аргона в радиоактивных м-лах по реакциям: Cl 35 + Не = Ar 38 + n ; Cl 35 + Не = К 38 + Н 1 ; К 38 → Ar 38 . При спонтанном и нейтронно-индукцированном делении урана наблюдается образование тяжелых изотопов криптона и ксенона (см. Метод определения абсолютного возраста ксеноновый). В м-лах литосферы искусственное расщепление атомных ядер вызывает накопление некоторых изотопов в количестве 10 -9 -10 -12 % от массы м-ла.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "РЕАКЦИИ ЯДЕРНЫЕ В ПРИРОДЕ" в других словарях:

    Ядерная физика Атомное ядро · Радиоактивный распад · Ядерная реакция Основные термины Атомное ядро · Изотопы · Изобары · Период полураспада · Ма … Википедия

    Ядерные реакции между лёгкими ат. ядрами, протекающие при очень высоких темп рах (=108К и выше). Высокие темп ры, т. е. достаточно большие относительные энергии сталкивающихся ядер, необходимы для преодоления электростатич. барьера,… … Физическая энциклопедия

    Хим. превращения и ядерные процессы, в к рых появление промежуточной активной частицы (свободного радикала, атома, возбужденной молекулы в хим. превращениях, нейтрона в ядерных процессах) вызывает цепь превращений исходных в в. Примеры хим. Ц. р … Химическая энциклопедия

    Одно из новых направлений совр. геол. науки, тесно смыкающееся со смежными разделами физики атомного ядра, геохимии, радиохимии, геофизики, космохимии и космогонии и охватывающее сложные проблемы естественной эволюции атомных ядер в природе и… … Геологическая энциклопедия

    Стабильные и радиоактивные изотопы, образующиеся в природных объектах под действием космического излучения, напр., по схеме: XАz + Р → YAZ + an + bр, в которой А = A1+ an + (b 1)р; Z = Z1.+ (b 1)p, где ХAz исходное ядро, Р быстрый… … Геологическая энциклопедия

    Термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез это реакция, обратная делению атомов: в последней… … Энциклопедия Кольера

    Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

    94 Нептуний ← Плутоний → Америций Sm Pu … Википедия

    Ядерная физика … Википедия

Книги

  • Получение ядерной энергии и редких и драгоценных металлов в результате ядерных превращений. Энергия связи и потенциальная энергия электрического взаимодействияэлектрических зарядов в нейтроне, дейтроне, тритии, гелии-3 и гелии-4
  • Получение ядерной энергии и редких и драгоценных металлов в результате ядерных превращений. Энергия связи и потенциальная энергия электрического взаимодействияэлектрических зарядов в нейтроне, дейтр , Ларин В.И.. В первой части настоящей книги рассматриваются разнообразные ядерные реакции по получению энергии и драгоценных металлов в результате принудительных ядерных превращений стабильных изотопов.…


2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.