Контроль гемодинамических показателей тяжелобольных. Оценка дыхания у пациента. Принципы ИВЛ. Измерение центрального венозного давления

И интенсивной терапии

Северный государственный медицинский университет, Архангельск

Мониторинг гемодинамики является одной из важнейших составных частей современного мониторинга в отделении анестезиологии, реанимации и интенсивной терапии (ОАРИТ). Так, параметры системы кровообращения составляют практически половину из всех компонентов Гарвардского стандарта мониторинга, который служит регламентирующей основой для проведения анестезиологического пособия (табл. 1) [, 1997].

Таблица 1

Гарвардский стандарт мониторинга

1) Постоянная ЭКГ

2) АД и пульс – каждые 5 мин.

3) Вентиляция – минимум 1 из параметров:

Пальпация или наблюдение за дыхательным мешком;

Аускультация дыхательных шумов;

Капнометрия или капнография;

Мониторинг газов крови;

Мониторинг выдыхаемого потока газов.

4) Кровообращение – минимум 1 из параметров:

Пальпация пульса;

Аускультация сердечных тонов;

Кривая артериального давления;

Пульсоплетизмография;

Пульсоксиметрия.

5) Дыхание – аудиосигнал тревоги для контроля дисконнекции дыхательного контура.

6) Кислород – аудиосигнал тревоги для контроля нижнего предела концентрации на вдохе.

Ведущими принципами мониторинга гемодинамики являются точность, надежность, возможность динамического наблюдения за больным, комплексность, наличие минимального количества осложнений, практичность и дешевизна, а также доступность получаемой информации. На этапах мониторинга становится возможной ранняя диагностика нарушений со стороны системы кровообращения, принятие решения и своевременная коррекция выявленных нарушений.
Минимальный объем мониторинга гемодинамики, который по международным стандартам должен осуществляться в ходе любой анестезии, включает в себя проведение пульсоксиметрии, неинвазивного измерения АД (предпочтительно аппаратным способом) и ЭКГ. Однако многим пациентам ОАРИТ требуется расширенный мониторинг гемодинамики, включающий несколько из представленных ниже компонентов.

Постоянный мониторинг ЭКГ

ЭКГ обеспечивает важной информацией о ЧСС, ритме, проводимости, ишемии миокарда и эффектах назначаемых препаратов. Для оценки сердечного ритма наиболее часто используется стандартное отведение II, однако следует помнить, что оно не обладает высокой чувствительностью в отношении признаков ишемии. Сочетание отведения II с левыми грудными отведениями (отведение V5) повышает чувствительность ЭКГ мониторинга в диагностике изменений сегмента ST с 33% до 80% . Многие современные мониторы автоматически измеряют динамику сегмента ST и выводят на экран тренды, анализирующие выраженность ЭКГ-признаков ишемии, что позволяет своевременно начать назначение нитратов и осуществлять другие лечебные мероприятия.

Пульсоксиметрия

В основе пульсоксиметрии лежат принципы оксиметрии и плетизмографии. В ходе оксиметрии за счет различной способности оксигемоглобина и дезоксигемоглобина абсорбировать лучи красного и инфракрасного спектра рассчитывается насыщение артериальной крови кислородом (SаO2, в норме 95-100%). Это дает возможность оценить адекватность оксигенирующей функции легких, доставки кислорода к тканям и ряда других важных физиологических процессов и обеспечивает своевременное назначение оксигенотерапии, ИВЛ и прочих лечебных мероприятий. Кроме того, пульсоксиметры позволяют осуществлять постоянное измерение ЧСС и демонстрируют на дисплее плетизмограмму – пульсовую волну, отражающую наполнение капилляров и состояние микроциркуляторного русла. Информативность пульсоксиметрии значительно снижается при расстройствах периферической микроциркуляции. Уменьшение сатурации не следует однозначно рассматривать как признак нарушения микроциркуляции, для уточнения диагноза необходимо выполнить анализ газового состава артериальной крови.
Технология пульсоксиметрии привела к появлению таких новых методов мониторинга, как измерение сатурации кислородом смешанной венозной крови и крови из центральной вены, позволяющих детально оценить транспорт кислорода и его потребление тканями и целенаправленно назначить инотропную и инфузионную терапию. Неинвазивная оксиметрия головного мозга дает возможность определить регионарное насыщение гемоглобина кислородом в мозге (rSO2, в норме приблизительно 70%). Доказано, что при остановке кровообращения, эмболии сосудов головного мозга, гипоксии и гипотермии, происходит выраженное снижение rSO2 [, 1998].

Артериальное давление (АД)

Методика и частота измерения АД определяются состоянием больного и видом хирургического вмешательства. При стабильной гемодинамике, как правило, достаточно неинвазивного измерения АД, предпочтительно аппаратным способом. Основные показания к инвазивному мониторингу АД включают следующие состояния:
1) быстрое изменение клинической ситуации у больных, находящихся в критическом состоянии (шок, рефрактерный к инфузионной терапии, острое повреждение легких, состояние после сердечно-легочной реанимации и др.);
2) применение вазоактивных препаратов (инотропы, вазопрессоры, вазодилататоры, анестетики, антиаритмики и др.);
3) высокотравматичные хирургические вмешательства (кардиохирургия, нейрохирургия, операции на легких и др.);
4) забор артериальной крови для анализов (газы крови, общие исследования).
Инвазивный мониторинг АД осуществляется при помощи катетеризации артерии (как правило, лучевой или бедренной). Это позволяет получать информацию о систолическом, диастолическом и среднем АД в каждый отдельно взятый момент времени. Кривая АД предоставляет непосредственную информацию о гемодинамическом эффекте аритмии. К тому же по крутизне анакроты можно косвенно судить о постнагрузке и сократительной способности миокарда. Основная цель лечебных мероприятий на основе мониторинга АД – поддержание среднего АД, отражающего перфузионное давление различных органов, на уровне 70-90 мм рт. ст.
Все системы прямого измерения АД создают артефакты, которые обусловлены неадекватным соединением, попаданием пузырьков воздуха в катетер, слишком выраженным или недостаточным демпфирующим эффектом системы и дрейфом нуля. Вышеперечисленные проблемы должны быть устранены до начала мониторинга.

Центральное венозное давление (ЦВД)

Первоочередные показания к мониторингу ЦВД включают наличие гиповолемии, шока и сердечной недостаточности. Кроме того, доступ к центральной вене необходим для обеспечения надежного пути назначения вазоактивных препаратов, инфузионной терапии, парентерального питания, аспирации воздуха при воздушной эмболии, электрокардиостимуляции, проведения экстракорпоральных процедур и т. д. ЦВД приблизительно соответствует давлению в правом предсердии (50-120 мм вод. ст. или 4- 9 мм рт. ст.), которое в значительной мере определяется конечно-диастолическим объемом правого желудочка. У здоровых людей, как правило, работа правого и левого желудочков изменяется параллельно, поэтому ЦВД косвенно отражает и заполнение левого желудочка [, 1998]. К сожалению, на фоне дисфункции миокарда и повышенной проницаемости сосудов ЦВД далеко не всегда позволяет адекватно предсказать изменения волемического статуса пациента и преднагрузки и серьезно уступает по своему прогностическому значению волюметрическим параметрам гемодинамики [ и соавт., 2003].
Изменения ЦВД достаточно неспецифичны. Так, повышение ЦВД наблюдается при правожелудочковой недостаточности, пороках сердца, гиперволемии, тромбоэмболии легочной артерии, легочной гипертензии, тампонаде сердца, увеличении внутригрудного давления (ИВЛ, гемо - и пневмоторакс, ХОБЛ), повышении внутрибрюшного давления (парез ЖКТ, беременность , асцит), повышении сосудистого тонуса (увеличение симпатической стимуляции, вазопрессоры). Снижение ЦВД отмечается при гиповолемии (кровотечение, диспептический синдром, полиурия), системной вазодилатации (септический шок, передозировка вазодилататоров, дисфункция симпатической нервной системы), региональной анестезии и др. Тренды динамики ЦВД более информативны, чем однократное измерение. Определенную информацию можно получить и при оценке формы кривой ЦВД, которая соответствует процессу сердечного сокращения .

Катетеризация легочной артерии и термодилюция

У пациентов с выраженными нарушениями функции сердечно-сосудистой системы целесообразно применять дополнительные объективные методы оценки сердечного выброса (СВ) и тех факторов, которые его определяют: преднагрузки, сократимости миокарда, постнагрузки, ЧСС и состояния клапанного аппарата сердца. В большинстве случаев для этого осуществляют препульмональную (с использованием катетеризации легочной артерии) и транспульмональную (катетеризация бедренной артерии) термодилюцию.
Препульмональная термодилюция основана на установке в малом круге кровообращения специального катетера Сван-Ганца. Эту процедуру осуществляют под контролем показателей давлений в полостях сердца. Следует дифференцировать использование катетера Сван-Ганца в коронарной хирургии и в ОАРИТ некардиологического профиля. При операциях на сердце даже в течение нескольких минут могут происходить значительные изменения параметров гемодинамики, что требует их тщательного контроля. На фоне различных нарушений периферической микроциркуляции могут наблюдаться изолированная или сочетанная систолическая или диастолическая дисфункция левого или правого желудочка. В этих изменениях чрезвычайно трудно разобраться без объективного метода мониторинга состояния системы кровообращения. В связи с этим катетеризация легочной артерии показана в первую очередь пациентам группы высокого риска (эхокардиографическая фракция выброса < 50%) [ и соавт., 2001].
Кроме давления в легочной артерии, катетер Сван-Ганца позволяет проводить прямое постоянное измерение ЦВД и давления заклинивания легочной артерии (ДЗЛА), косвенно отражающего преднагрузку левых отделов сердца. Кроме того, катетер Сван-Ганца может быть использован для измерения (СВ) по методу болюсной термодилюции. При этом введение в правое предсердие определенного количества раствора, температура которого меньше температуры крови больного, изменяет температуру крови, контактирующей с термистором в легочной артерии. Степень изменения обратно пропорциональна СВ. Изменение температуры незначительно при высоком СВ и резко выражено, если СВ низок. Графическое отображение зависимости изменений температуры от времени представляет собой кривую термодилюции. СВ определяют с помощью компьютерной программы, которая интегрирует площадь под кривой термодилюции [, 1998].
Некоторые современные мониторы (Baxter Vigilance) выполняют автоматическое непрерывное измерение сердечного выброса. В основе их работы лежит метод измерения скорости перехода тепловой энергии от термофиламента, установленного на катетере проксимальнее клапана легочной артерии, к крови и термистору на конце катетера в легочной артерии. Ряд катетеров снабжен оксиметрами, что позволяет осуществлять постоянный мониторинг кислородной сатурации смешанной венозной крови. В некоторых катетерах Сван-Ганца (технология Pulsion VolEF), кроме давлений в малом круге, возможно измерение объемов правого и левого сердца и фракции выброса правого желудочка [, 2004]. Наряду с этим, катетеризация легочной артерии позволяет рассчитать индексы, отражающие работу миокарда, транспорт и потребление кислорода. Потенциальные проблемы, связанные с катетеризацией легочной артерии, включают аритмию, узлообразование катетера, инфекционные осложнения и повреждение легочной артерии. Кроме того, при целом ряде состояний отсутствуют убедительные данные о возможности метода улучшить клинический исход .
Методика транспульмональной термодилюции, получившая воплощение в технологии PiCCO, включает введение больному "холодового" индикатора (5%-й раствор глюкозы или 0,9%NaCl температуры от 0 до 10°С), проникающего сквозь просвет сосудов во внесосудистый сектор. В последние годы эта методика постепенно вытесняет более дорогостоящую термохромодилюцию с использованием специальных красителей. В отличие от катетера Сван-Ганца, дилюция носит транспульмональный характер (раствор проходит через все отделы сердца, легкие и аорту, а не только через правые отделы сердца, как при катетеризации легочной артерии).
Техника транспульмонального разведения индикатора основана на положении, что введенный в центральную вену термоиндикатор пройдет с кровотоком путь от правого предсердия до термодатчика фиброоптического катетера, расположенного в бедренной или лучевой артерии. Это позволяет построить кривую термодилюции и рассчитать СВ [, 2003]. Основываясь на анализе формы кривой термодилюции и пульсовой волны рассчитывается целый комплекс параметров гемодинамики, включающий не только показатели давлений, но и объемные характеристики (табл. 2).
Часто применение транспульмональной термодилюции обеспечивает достаточный контроль показателей гемодинамики, что позволяет избежать катетеризации легочной артерии. В целом применение метода показано при шоковых состояниях, оcтром повреждении легких, политравме, ожогах, сердечной недостаточности и отеке легких, в кардиохирургии и трансплантологии. В тех ситуациях, когда прогнозируется легочная гипертензия и нарушение функции правого желудочка, целесообразно сочетание транспульмональной и препульмональной термодилюции [, 2004].
В 2004 г. Hoeft предложил использовать следующие основные гемодинамические ориентиры в ходе анестезии и интенсивной терапии у больных, требующих инвазивного мониторинга гемодинамики:

АД сред. > 70 мм рт. ст.;

Сердечный индекс (СИ) > 3 л/мин/м2;

Ударный индекс (УИ) > 40 мл/м2;

Волемический статус;

Глобальный конечно-диастолический объем (ГКДО) > 680 мл/м2;

Внутригрудной объем крови (ВГОК) > 850 мл/м2;

Внесосудистая вода легких (ВСВЛ) < 7 мл/кг.

Применение этих ориентиров может оказаться решающим в выборе инфузионных сред, инотропной/вазопрессорной поддержки, проведении ИВЛ, назначении диуретиков и почечной заместительной терапии. Доказано, что внедрение в практику ОАРИТ алгоритмов лечения, основанных на показателях гемодинамики, облегчает ведение больных и может улучшить клинический исход .

Неинвазивный мониторинг сердечного выброса

В настоящее время существуют 4 основных методики для неинвазивного определения СВ.
1. Ультразвуковая допплерография за счет измерения линейной скорости кровотока в аорте позволяет определить ударный объем (УО), СВ и постнагрузку. Наиболее распространена чреспищеводная допплерография с помощью технологии Deltex. Метод привлекает неинвазивностью и быстротой в получении параметров, однако его результаты во многом приблизительны и зависят от положения датчика в пищеводе.
2. Измерение СВ с помощью анализа содержания CO2 в конце выдоха (технология NICO) основано на непрямом методе Фика (прямой метод Фика для определения СВ на основе оценки потребления кислорода и его содержания в организме требует наличия катетеров в сердце, артерии и центральной вене, а также стабильных условий метаболизма, поэтому его использование ограничено экспериментальными условиями). Несмотря на свою неинвазивность, метод недостаточно точен и зависит от показателей вентиляции и газообмена.
3. Измерение биоимпеданса грудной клетки с помощью специальных электродов в точке сердечного цикла, соответствующей деполяризации желудочков, также дает возможность оценить УО и СВ. Метод чувствителен к электрической интерференции и в значительной мере зависит от правильности наложения электродов. Его точность сомнительна при целом ряде критических состояний (отек легких, плеврит, объемная перегрузка и др.) [, 1998].
4. Анализ формы пульсовый волны с помощью технологий PiCCO, LidCO и Edwards Lifesciences на основе инвазивного измерения АД. Ценность метода ограничена при аневризмах аорты, внутриаортальной баллонной контрпульсации и клапанной патологии. В ходе измерений возможна повторная калибровка показателей (3-4 раза в сутки) с помощью транспульмональной термодилюции (методика PiCCO) или введения литиевого индикатора (методика LidCO).
В целом, по точности и эффективности все эти методы уступают транспульмональной термодилюции .

Таблица 2

Нормальные значения гемодинамических показателей, измеряемых с помощью волюметрического мониторинга гемодинамики (при использовании методик PiCCO и VolEF)

Показатель

Метод расчета

Норма

Артериальное давление (АДсред. /MAP) АДсист./АДдиаст.

АДсред. – по пульсовой кривой. Непосредственное измерение сист. и диаст. АД

70-90 мм рт. ст. 130-90/90-60 мм рт. ст.

Сердечный индекс (СИ/CI)

Интегральный расчет площади под кривой термодилюции

3,0-5,0 л/мин/м2

Центральное венозное давление (ЦВД /CVP)

Непосредственное измерение

2-10 мм рт. ст.

Температура тела

Измерение датчиком термистора

Частота сердечных сокращений (ЧСС/HR)

По пульсовой кривой

60-90 уд/мин

Индекс глобального (всех камер сердца) конечно-диастолического объема (ИГКДО/ GEDVI)

GEDVI = (ITTV – PTV) / BSA

680-800 мл/м2

Индекс внутригрудного объема крови (ИВГОК/ITBVI)

ITBVI =1,25 х GEDVI

Индекс внесосудистой воды легких (ИВСВЛ/EVLWI)

EWLVI = (ITTV – ITBV) / BW

3,0-7,0 мл/кг

Индекс функции сердца (ИФС/CFI)

CFI = CI / GEDVI

4,5-6,5 мин^-1

Индекс сократимости левого желудочка (ИСЛЖ/dPmx)

Анализ формы пульсовой артериальной волны (максимальная скорость роста систолического сегмента пульсовой кривой): dPmx = d(P) / d(t)

мм рт. ст.

Ударный индекс (УИ/SVI)

Глобальная фракция изгнания (ГФИ/GEF)

GEF = 4 х SV / GEDV

Вариабельность ударного объема (ВУО/SVV)

Вариационный анализ ударного объема SVV = (SVmax – SVmin) / SVmean

Вариабельность пульсового давления (ВПД/PPV)

Вариационный анализ пульсового давления PPV = (PPmax – PPmin) / PPmean

Индекс системного сосудистого сопротивления (ИССС/SVRI)

SVRI = 80 x (MAP – CVP) / CI

дин х сек х см-5/м^2

Индекс проницаемости легочных сосудов (ИПЛС/PVPI)

PVPI = EVLW / PBV

Давление в легочной артерии
(ДЛАср./РAP)
ДЛАсист./ ДЛАдиаст.

Непосредственное измерение с помощью катетера Сван-Ганца

10-20 мм рт. ст.
15-25/8-15 мм рт. ст.

Давление заклинивания легочных капилляров (ДЗЛК/PCWP)

Непосредственное измерение с помощью катетера Сван-Ганца после надувания баллончика на его конце

6-15 мм рт. ст.

Индекс легочного сосудистого сопротивления (ИЛСС/PVRI)

PVRI = 80 x (PAP – PCWP) / CI

45-225 дин х сек x см-5/м2

Индекс конечно-диастолического объема правого сердца (ИКДОПС/RHEDVI)

RHEDVI = MTtTDpa х CIpa

275-375 мл/м2

Индекс конечно-диастолического объема правого желудочка (ИКДОПЖ/RVEDVI)

RVEDVI = DStTDpa х CIpa

Фракция изгнания правого желудочка (ФИПЖ/RVEF)

RVEF = (SV / RVEDV) х 100

Индекс конечно-диастолического объема левого сердца (ИКДОЛС/LHEDVI)

LHEDVI = (GEDV – RHEDV) / BSA

275-375 мл/м2

Соотношение КДО правых и левых отделов сердца (R/L)

R / L = RHEDV / LHEDV

ITTV (Intrathoracic Thermal Volume) – внутригрудной термальный объем; PTV (Pulmonary Thermal Volume) – легочный термальный объем; BSA – площадь поверхности тела; BW (Body Weight) – масса тела; GEDV (Global End-Diastolic Volume) – глобальный конечно-диастолический объем; SV (Stroke Volume) – ударный объем правого желудочка; SVmax и PPmax – максимальные значения УО и ПД за 30 секунд; SVmin и PPmin – минимальные значения УО и ПД за 30 секунд; SVmean и PPmean – средние значения УО и ПД за 30 секунд; EVLW (Extravascular Lung Water) – внесосудистая вода легких; PBV (Pulmonary Blood Volume) – легочной объем крови; CIpa – сердечный индекс, рассчитанный при анализе термодилюционной кривой в легочной артерии; MTtTDpa – среднее время прохождения термоиндикатора от точки его введения до кончика катетера Сван-Ганца; DStTDpa – время экспоненциального убывания пульмональной термодилюционной кривой; RVEDV – конечно-диастолический объем правого желудочка; RHEDV – конечно-диастолический объем правого сердца; LHEDV – конечно-диастолический объем левого сердца.

Эхокардиография

Трансторакальная и чреспищеводная эхокардиография позволяет оценить анатомию сердца в динамике. С помощью метода можно измерить заполнение левого желудочка (конечно-диастолический и конечно-систолический объем), фракцию изгнания, оценить функцию клапанов, глобальную и местную сократимость миокарда, выявить зоны гипо-, дис - и акинезии. Кроме того, эхокардиография дает возможность обнаружить выпот в полости перикарда и диагностировать тампонаду сердца. Ценность метода зависит от навыков и опыта оператора в получении и интерпретации ультразвуковой картины.
Кроме вышеперечисленных методов мониторинга, косвенную информацию об адекватности перфузии и СВ могут дать градиент между центральной и периферической температурами (в норме не более 1°С) и диурез (в норме 1 мл/кг/ч).
Таким образом, показатели, получаемые с помощью современного мониторинга гемодинамики, служат ценным ориентиром в ходе анестезии и интенсивной терапии критических состояний. Мониторинг гемодинамики обладает важным прогностическим значением и может улучшить клинический исход.

Литература

1. , Сигаев при операциях на работающем сердце. Минимально инвазивная реваскуляризация миокарда. М., 2001, С. 132-144.

2. , Недашковский термодилюция и волюметрический мониторинг в отделении анестезиологии, реанимации и интенсивной терапии. Методические рекомендации. Архангельск, 2004. С. 1-24.

3. , Аптон вопросы и темы в анестезиологии. М., 1997. С. 140.

4. , Недашковский мониторинг на основе транспульмональной термодилюции в анестезиологии и интенсивной терапии. Анестезиология и реаниматология 2003, №4. С. 67-73.

5. , Михаил анестезиология. Книга 1. С-Пб., 1998. С. 99-149.

6. Higgins M. J., Hickey S. Anesthetic and perioperative management in coronary surgery. In: Surgery of Coronary Artery Disease. (Ed. Wheatley D. J.). Arnold, London, 2003, 135-156.

7. Hoeft A. Refresher Course of Lectures, Euroanesthesia. 20

8. Kirov M. Y., Kuzkov V. V., Bjertnaes L. J. Extravascular lung water in sepsis. In: Yearbook of Intensive Care and Emergency Medicine 2005 (Ed. Vincent J. L.). Springer-Verlag. Berlin-Heidelberg - New York, 20

9. Malbrain M., De Potter T., Deeren D. Cost-effectiveness of minimally invasive hemodynamic monitoring. In: Yearbook of Intensive Care and Emergency Medicine 2005 (Ed. Vincent J. L.). Springer-Verlag. Berlin-Heidelberg - New York, 2005, 603-631.

Нормализация гемодинамики и перфузии - одна из основных составляющих целенаправленной интенсивной терапии критических состояний, которая обеспечивает улучшение исходов заболеваний и травм. Основой для выбора адекватных методов восстановления и поддержания надлежащей перфузии тканей является мониторинг гемодинамики, волемии, кровопотери, гемокоагуляции и метаболизма.

Ценность мониторинга заключается в использовании полученных данных для определения целей терапевтического воздействия. Эта концепция носит название целенаправленной терапии (Goal Direct Therapy) и заключается в воздействии на физиологические мишени с целью улучшения сердечного выброса, доставки кислорода, поддержания адекватной перфузии тканей и потребления кислорода.

Способы мониторинга непрерывно эволюционируют от полностью инвазивных к малоинвазивным и полностью неинвазивным технологиям. Однако, по словам М. Pinsky, «не существует устройства для мониторинга, какие бы сложные задачи оно не решало, которое само по себе улучшало бы исход у пациентов, независимо от проводимой терапии».

Существует множество клинических показаний для оптимизации кровообращения, конечной целью которой является оптимизация баланса между доставкой (DO2) и потреблением кислорода (VO2).

Эти показания могут быть обусловлены состоянием пациента и причиной недостаточности кровообращения:

  • тяжелое заболевание или повреждение сердечно-сосудистой и дыхательной систем с выраженными функциональными нарушениями;
  • возрастные функциональные нарушения одной и более систем органов;
  • острая массивная кровопотеря травматического и хирургического генеза (> 2,5 л);
  • тяжелый сепсис;
  • шок или тяжелая гиповолемия любого генеза;
  • дыхательная недостаточность (PaO2 < 60 мм рт.ст., SaO2 < 90 % у пациента на спонтанном дыхании или PaO2/FiO2 < 300 мм рт.ст. у пациента на искусственной вентиляции легких (ИВЛ));
  • острая энтеропатия (абдоминальный компартмент-синдром, панкреатит, перфорация внутренних органов, желудочно-кишечное кровотечение);
  • острая почечная недостаточность (мочевина > 20 ммоль/л, креатинин > 200 мкмоль/л).

Кроме того, существуют показания, связанные с хирургическим вмешательством:

  • обширные некардиохирургические вмешательства (пульмонэктомия, резекции печени, кишечника, сложные травматологические и ортопедические вмешательства);
  • обширные (комбинированные) вмешательства на сердце и сосудах (аневризма аорты, комбинированное протезирование клапанов сердца, аортокоронарное шунтирование и каротидная эндартерэктомия);
  • продолжительные хирургические вмешательства, длящиеся более 2 часов (например, в нейрохирургии, гастроинтестинальной хирургии);
  • срочные полостные хирургические вмешательства.

Выбор мониторинга в зависимости от степени тяжести пациента и риска осложнений: CO - сердечный выброс; PAC - катетер в легочной артерии; PPV - вариабельность пульсового давления; ScvO2 - насыщение кислородом центральной венозной крови

На этапе начальной реанимации, кроме базовых гемодинамических параметров, часто может быть необходим инвазивный мониторинг (артериальный и центральный венозный катетер, термодилюционные измерения). Многие тесты функционального мониторинга, оценка ответа на проводимую инфузию требуют особых условий (ИВЛ, миорелаксации).

Стабилизация состояния пациента ведет к обоснованному уменьшению необходимого мониторинга. Оптимальное значение гемодинамических параметров может варьировать от пациента к пациенту, от состояния к состоянию. Нормальные значения могут рассчитываться на идеальную массу тела, зависят от пола, возраста и сопутствующих заболеваний.

Согласно современному определению, шок понимают, как жизнеугрожающую генерализованную форму острой недостаточности кровообращения, связанную с неадекватным потреблением кислорода. Как результат, развиваются клеточная дизоксия и повышение уровня лактата в крови. Считают, что в основе шока могут лежать проблемы, связанные с синдромом малого сердечного выброса (гиповолемическая, кардиогенная, обструктивная) или с гиперкинетическим состоянием (перераспределительная), также может наблюдаться сочетание этих причин.

С 2014 г. действует консенсус Европейского общества интенсивной терапии, посвященный циркуляторному шоку, который является наиболее распространенным видом, и его гемодинамическому мониторингу. Цель консенсуса - унифицировать диагностику, интенсивную терапию и мониторинг шока. Остановимся на ряде его положений.

  • Рекомендуют частое измерение частоты сердечных сокращений (ЧСС), артериального давления (АД), температуры тела и признаков гипоперфузии у пациентов с историей и клиническими проявлениями шока.
  • Признак шока - артериальная гипотензия (систолическое АД (САД) < 90 мм рт.ст., или среднее САД < 65 мм рт.ст., или уменьшение > 40 мм рт.ст. от исходного уровня).
  • Рекомендуют серийные измерения лактата в крови во всех случаях, когда шок подозреваем. Лактат при шоке, как правило, > 2 ммоль/л.
  • У пациентов с наличием центрального венозного катетера показано измерение центрального венозного насыщения кислородом (ScvО2) и веноартериальной разницы СО2, чтобы помочь оценить адекватность сердечного выброса.
  • Эхокардиографию (ЭхоКГ) считают предпочтительным методом первоначальной оценки типа шока в отличие от более инвазивных технологий.
  • У наиболее сложных пациентов, чтобы определить тип шока, показана катетеризация легочной артерии или транспульмональная термодилюция.
  • Рекомендуют индивидуальный выбор целевого АД при реанимации.
  • Рекомендуют начальное АД >65 мм рт.ст.
  • Допустима гипотония у пациентов с неконтролируемым кровотечением без тяжелой травмы головы.
  • Показан более высокий уровень АДср у септических пациентов с гипертонией.
  • Рекомендуют катетеризацию артерии при отсутствии реакции на стартовую инфузионную терапию и/или необходимости назначения вазопрессоров.
  • Инотропные агенты должны быть добавлены, когда измененная функция сердца сопровождается низким или недостаточным сердечным выбросом (СВ) и признаки тканевой гипоперфузии сохраняются после достигнутой оптимизации преднагрузки.
  • Не рекомендуют рутинное измерение СВ у пациентов с шоком, ответивших на стартовую инфузионную терапию.
  • Измерение СВ и ударного объема показано для оценки реакции на жидкости или инотропы у пациентов, которые не реагируют на стартовую инфузионную терапию.
  • При инфузионной терапии следует руководствоваться более одной гемодинамической переменной.
  • Рекомендуют использовать динамические, а не статические переменные, чтобы предсказать отклик на инфузию.
  • У больных с тяжелым шоком, особенно в случае сопутствующего респираторного дистресс- синдрома, рекомендуют использовать транспульмональную термодилюцию или катетеризацию легочной артерии.

Методы мониторинга

Наиболее широко используемые методы мониторинга включают:

  • неинвазивное измерение АД - при стабильной гемодинамике, предпочтительнее использовать среднее АД, определяющее перфузию органов;
  • инвазивное измерение АД - при гипотензии, быстром изменении клинической ситуации у больных, находящихся в критическом состоянии (шок, острый респираторный дистресс-синдром, сердечно-легочная реанимация и др.), применении вазоактивных препаратов (инотропы, вазопрессоры, вазодилататоры и др.), высокотравматичных вмешательствах;
  • электрокардиография (ЭКГ) (отведения II, V5, анализ ST) - обеспечивает важной информацией о ЧСС, ритме, проводимости, ишемии миокарда и эффектах назначаемых препаратов;
  • пульсоксиметрия (SpО2) - дает возможность оценить адекватность оксигенирующей функции легких, доставки кислорода к тканям и ряда других важных физиологических процессов, обеспечивает своевременное назначение оксигенотерапии, ИВЛ и прочих лечебных мероприятий;
  • плетизмография - постоянное измерение ЧСС и формы пульсовой волны, отражающей наполнение капилляров и состояние микроциркуляторного русла (перфузионный индекс, индекс вариабельности плетизмограммы);
  • измерение сатурации кислородом смешанной венозной крови и крови из центральной вены позволяет детально оценить транспорт кислорода и его потребление тканями, целенаправленно назначить инотропную и инфузионную терапию. SvO2 (смешанная венозная сатурация) - насыщение гемоглобина венозной крови кислородом в легочной артерии, за правым сердцем.

Повышение SvO2 (> 75 %) - признак низкого потребления кислорода (VO2) при гипотермии, общей анестезии, миорелаксации и низкой экстракции O2 при отравлении угарным газом, высоком сердечном выбросе (сепсис, ожоговый шок, шунт слева направо, артерио-венозная фистула).

Снижение SvO2 (< 60 %) - признак снижения СВ при остром инфаркте миокарда, острой и хронической сердечной недостаточности, гиповолемии; при сочетании со снижением уровня Hb - признак кровотечения; при снижении SрO2 - признак гипоксии, острой дыхательной недостаточности; повышения потребления O2 при лихорадке, стрессе, тиреотоксикозе, дрожи.

ScvO2 (центральная венозная сатурация) - насыщение гемоглобина венозной крови кислородом в верхней полой вене непосредственно перед правым сердцем. При стабильных показателях SрO2, потребления кислорода (VO2) и Hb - SvO2 отражает сердечный выброс.

У здоровых людей венозная сатурация варьирует в пределах 70–80 %, при хронической сердечной недостаточности может быть более низкое значение (до 65 %) без признаков тканевой гипоксии. Летальность экстренно госпитализированных в отделение интенсивной терапии (ОИТ) пациентов в 1,7 раза выше при ScvO2 < 60 %. Показатели SvO2 и ScvO2 могут служить одним из критериев нарушения кислородного баланса и быть ориентиром при подборе методов терапии (поддержание SvO2 > 65 % и ScvO2 > 70 %);

  • температура тела - особенно важна у больных в состоянии шока и при длительных хирургических и анестезиологических процедурах, влияющих на состояние терморегуляции;
  • мониторинг центрального венозного давления (ЦВД) - показан при гиповолемии, шоке, сердечной недостаточности.

Повышение ЦВД характерно для правожелудочковой недостаточности, пороков сердца, гиперволемии, тромбоэмболии легочной артерии, легочной гипертензии, тампонады сердца, увеличения внутригрудного давления (ИВЛ, гемо- и пневмоторакс, хроническая обструктивная болезнь легких), повышения внутрибрюшного давления (беременность, асцит и др.), повышения сосудистого тонуса (увеличение симпатической стимуляции, вазопрессоры).

Снижение ЦВД возникает при гиповолемии (кровотечение, полиурия и др.), системной вазодилатации (септический шок, передозировка вазодилататоров, дисфункция симпатической нервной системы, региональная анестезия).

ЦВД не должно использоваться для клинических решений относительно волемического баланса. ЦВД < 5 мм рт.ст. обладает способностью предсказывать восприимчивость к объемной нагрузке лишь в 47 % случаев. Тем не менее показатель ЦВД включен во многие протоколы инфузионной терапии.

Золотым стандартом оценки параметров центральной гемодинамики и отклика на инфузию считают мониторинг сердечного выброса. Существует ряд способов измерения сердечного выброса, которые различаются степенью инвазивности и непрерывным или прерывистым методом исследования.

Методы на основе термодилюции позволяют осуществлять измерение СВ, ЦВД, давления в правых отделах сердца, легочной артерии, давления заклинивания, системного сосудистого сопротивления и сопротивления легочных сосудов. На сегодняшний день, исходя из соотношения «польза - риск», широкое применение данных методов не рекомендуют.

Анализ пульсовой волны - PICCO, Pulsio Rex, LIDCO, Edwards Lifesciences (Vigileo), в том числе с предшествующей калибровкой на основе дилюции лития (LIDCO), термодилюции (PICCO). Все эти методы подвержены погрешности в связи с физиологическими особенностями сердечно-сосудистой (аритмия, инотропная функция сердца, ЧСС) и респираторной систем (дыхательный объем, положительное давление в конце выдоха, растяжимость легких и грудной клетки).

Трансторакальная и чреспищеводная ЭхоКГ - оценка конечно-диастолического и конечно-систолического объема, фракции выброса, диагностика зон дис- и акинезии, тампонады сердца, клапанной патологии (наличие регургитации, градиента давлений, вегетаций и др.).

Ультразвуковая допплерография : технологии Deltex и HemoSonic - непрерывная оценка сердечного выброса за счет измерения линейной скорости кровотока в аорте.

Преимущества допплерографических методик: неинвазивность и относительная простота, получение большого количества информации о функции сердечно-сосудистой системы в режиме реального времени. Недостатки: результаты приблизительные и зависят от положения датчика в пищеводе, может возникать дисфагия, использование метода требует общей анестезии. При нестабильной гемодинамике увеличивается погрешность измерений.

Измерение СВ с помощью анализа содержания СО2 в конце выдоха (технология NICO). Преимущества: неинвазивность. Недостатки: точность ниже, чем у инвазивных методик, зависимость от показателей вентиляции и газообмена.

Измерение гемодинамики с помощью биоимпеданса грудной клетки . Метод чувствителен к электрической интерференции, движениям больного, в значительной мере зависит от правильности наложения электродов. Точность биоимпедансных методов сомнительна при целом ряде критических состояний (отек легких, плеврит, объемная перегрузка, ИВЛ, аритмии, патология клапанов и др.).

Индекс вариабельности плетизмограммы - PVI (индекс волемии) - вариации перфузионного индекса в ходе дыхательного цикла (технология Masimo Rainbow Pulse CO-Oximetry). Недавно проведенный метаанализ показал, что PVI имел приемлемую надежность в предсказании ответа на инфузию жидкости у вентилируемых пациентов. Тем не менее изменения вазомоторного тонуса, назначение вазопрессоров, переохлаждение оказывают непосредственное влияние на плетизмографический сигнал и являются потенциальными ограничениями метода.

Технология неинвазивного и непрерывного измерения сердечного выброса - esCCO (Nihon Kohden, Япония) позволяет получить информацию о динамике кровообращения пациента. Метод основан на анализе основных параметров состояния сердечно-сосудистой системы - ЭКГ, неинвазивное АД, плетизмограммы и SpО2. При анализе ЭКГ и плетизмограммы определяют время передачи пульсовой волны (PWTT), которое имеет стойкую обратную корреляцию с ударным объемом.

В настоящее время продолжается изучение возможностей применения esCCO при различных критических состояниях. Недавние исследования по сравнению СВ, измеряемого методом esCCO и термодилюцией, показали хорошую корреляцию между этими двумя методами, с небольшим отклонением (от 0,04 до 0,13 л/мин). При сравнении esCCO с трансторакальной эхокардиографией показали хорошую корреляцию у пациентов в кардиологии с пределами колебаний от -0,60 до 0,68 л/мин, а также у пациентов ОПТ с отклонением -1,6 л/мин.

Из представленных технологий оценки сердечного выброса мы в последнее время получили возможность использования esCCO. Для оценки восприимчивости к инфузионной терапии и коррекции волемической и вазопрессорной поддержки использовали данную технологию у пациентов с циркуляторным шоком (п = 15).

Если инфузионные болюсы в объеме 250-500 мл вызывали достоверное повышение сердечного выброса (норма 4-6 л/мин) и ударного объема (норма 60-100 мл), пациента считали восприимчивым к волемической терапии и продолжали восполнение объема циркулирующего русла. При отсутствии положительной гемодинамической реакции рассматривали необходимость применения вазопрессорных и инотропных препаратов.

Главным результатом нашего исследования является то, что esCCO позволяла обнаружить быстрые изменения сердечного выброса у взрослых пациентов в ранней фазе циркуляторного шока. Согласно данным литературы и собственных наблюдений, данная технология позволяет оценить сердечную недостаточность как компонент недостаточности кровообращения и провести ее целенаправленную коррекцию путем оптимизации преднагрузки, постнагрузки и инотропной функции сердца.

Таким образом, методика esCCO, по-видимому, соответствует большинству из требований, предъявляемых к адекватному гемодинамическому мониторингу, хотя недостаток современных исследований не позволяет делать какие-либо окончательные выводы.

Считаем, что результаты нашего исследования позволяют высказать аргументы в поддержку использования esCCO:

  • esCCO является простым и неинвазивным методом для оценки гемодинамического статуса;
  • обучение врачей в ОПТ использованию и интерпретации esCCO не представляет больших сложностей;
  • метод предоставляет возможность ускорить оптимизацию гемодинамического статуса пациента.

Ограничениями метода являются зависимость от возможности получить надежный плетизмографический сигнал, что может быть затруднено у пациентов с низкими показателями гемодинамики и холодными конечностями, а также с нерегулярным сердечным ритмом.

Для оценки восприимчивости к инфузии наиболее простым прикроватным методом считают тест с пассивным поднятием ног на 30-45° для оценки реакции сердечного выброса и АД. Режим вентиляции, тип вводимой жидкости, исходное положение и метод измерения не влияют на диагностическую эффективность пассивного поднятия ног. Его считают лучшим предсказателем ответа на инфузию жидкости для гипотензивных пациентов, не нуждающихся в вазопрессорной терапии.

Для более тяжелых больных, которым проводится ИВЛ и вазопрессорная поддержка, лучшим выбором считают эхокардиографическую оценку функции сердца. Для пациентов в сознании, на спонтанном дыхании и с вазопрессорной поддержкой также рекомендуют тест с пассивным поднятием ног для оценки динамики изменения сердечного выброса.

Таким образом, при проведении интенсивной терапии, направленной на коррекцию сердечного выброса, необходимо оценивать, насколько эффективен гемодинамический и метаболический эффект этих изменений. Для этого необходимы учет и оценка ментального статуса, микроциркуляции (лактат, ScvO2, Da-vO2, PCO2, PiCO2, оценка сублингвальной области), диуреза, внутрибрюшного давления.

Роль оценки микроциркуляции неуклонно возрастает, так как м икроциркуляторная дисфункция неизбежно ведет к тканевой дизоксии, несмотря на нормальную или повышенную доставку кислорода. Продолжается внедрение методик оценки микроциркуляци в протоколы целенаправленной терапии (прижизненная микроскопия микрососудистого русла, лазерная допплерометрия капиллярного кровотока, инфракрасная спектроскопия для оценки тканевой оксигенации).

Целевыми параметрами при противошоковой терапии в настоящее время считают:

  • систолическое АД > 80 и > 120 мм рт.ст. при повреждении центральной нервной системы;
  • среднее АД > 65 мм рт.ст.;
  • сердечный индекс более 3 л/мин/м2,
  • ScvO2 более 75 %,
  • SvO2 более 65–70 %,
  • ЦВД 6–8 мм рт.ст.,
  • снижение лактата.

Необходим комплексный подход к мониторингу гемодинамики при интенсивной терапии критических состояний с оценкой САД, ЦВД и ScvO2. Обязательна оценка чувствительности к инфузионной терапии (тест с подъемом ног, динамические параметры); оценка сердечного выброса вместе с тканевым потреблением кислорода (S(c)vO2 , Da-vO2); оценка отека тканей в поздней фазе - индекс внесосудистой воды легких; достоверная оценка преднагрузки (ЭхоКГ, ультразвуковое исследование, волюметрический мониторинг).

Йовенко И.А., Кобеляцкий Ю.Ю., Царев А.В., Кузьмова Е.А., Машин А.М.

ТЕМА 6.

ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ ГЕМОДИНАМИКИ И ДЫХАНИЯ БОЛЬНОГО

Определение основных показателей гемодинамики

Основными показателями состояния гемодинамики является пульс и артериальное давление.

Пульс – это толчкообразные колебание стенок артерий в результате движения крови и изменения давления при сокращении сердца. Характеристика пульса зависит от деятельности сердца и состояния артерий, а также изменяется при психическом возбуждении, физической работе, колебаниях окружающей температуры, при действии некоторых лекарственных препаратов, алкоголя.

Самым простымметодом исследования пульса является его пальпация, которую проводят там, где артерии размещены поверхностно. С диагностической целью пульс определяют на разных артериях: сонной, височной, бедренной, подключичной, плечевой, лучевой, подколенной, артериях тыла стопы. Чаще всего пульс определяют пальпаторно на лучевой артерии между шиловидным отростком лучевой кости и сухожилием внутренней лучевой мышцы (рис. 6.1). Сначала оцениваютсимметричность пульса, определяя его одновременно на двух руках. Руки пациента должны находиться на уровне сердца в положении, среднем между супинацией и пронацией. Руку исследуемого берут в участке лучезапястного сустава большим пальцем извне и снизу, а подушечками четвертого, среднего и указательного пальцев – сверху и, почувствовав пульсирующую артерию в отмеченном месте, с умеренной силой прижимают ее к внутренней поверхности лучевой кости. При одинаковом пульсе на обеих руках исследования продолжают на одной руке, обращая внимание на ритм пульса, его частоту, наполнение и напряжение. Если есть разница в наполнении пульса (аномалии развития, сужения или сдавления одной из артерий), то другие его свойства определяют на той лучевой артерии, где пульсовые волны более четки.

Рис. 6.1. Определение пульса:

а) на обеих руках; б) на височной артерии; в) на сонной артерии.

Ритм пульса оценивают по регулярности пульсовых волн, которые возникают одна за другой. Если пульсовые волны появляются через одинаковые промежутки времени, это свидетельствует оправильном ритме (ритмичный пульс) ; при разных интервалах между пульсовыми волнами ритм пульсанеправильный (неритмичный пульс). У здорового человека сердце сокращается ритмично, с одинаковыми интервалами между пульсовыми волнами, а также может наблюдаться так называемая дыхательная аритмия – увеличение частоты пульса во время вдоха и замедления во время выдоха, которая исчезает при задержке дыхания.

Частота пульса – это количество пульсовых колебаний в минуту, которое зависит от деятельности сердца. У здорового человека количество пульсовых волн отвечает количеству сердечных сокращений и равняется 60-80 ударов в минуту. Чтобы определить частоту пульса в минуту проводят ее оценку в течение 15 с и полученное число умножают на 4. Если пульс аритмичен, то его считают в течение 1 минуты. Частоту пульса свыше 90 ударов в минуту называюттахикардией , а частоту меньше 60 ударов в минуту –брадикардией. В физиологичных условиях частота пульса зависит от многих факторов: возраста – наибольшая частота пульса в первые годы жизни; пола – у женщин пульс на 5-10 ударов больше, чем у мужчин; от физической работы и психического состояния (страх, гнев, боль) – пульс ускоряется, а во время сна пульс замедляется. Причинойдлительной тахикардии может быть повышение температуры тела:повышение температуры тела на 1° С убыстряет пульс на 8-10 ударов в минуту . Особенно тревожным симптомом является снижение температуры с нарастающей тахикардией.Брадикардия наблюдается у пациентов, которые выздоравливают после тяжелых инфекционных заболеваний, заболеваний мозга, повреждения проводниковой системы сердца.

Напряжение пульса – это степень сопротивления артерии нажатию пальца. Его определяет сила, с которой необходимо прижать стенку артерии, чтобы прекратить пульсацию. Напряжение зависит от давления крови в артерии, что предопределено деятельностью сердца и тонусом сосудистой стенки. При заболеваниях, которые сопровождаются повышением тонуса артерии, (гипертоническая болезнь, атеросклероз), сосуд сдавить трудно, – такой пульс называютнапряженным или твердым . Наоборот, при резком падении артериального тонуса (коллапс) –пульс мягкий (достаточно легкого нажатия на артерию, как пульс исчезает).

Наполнение пульса – это степень наполнения кровью артерии во время систолы сердца, зависящее от величины сердечных выбросов, то есть от количества крови, которую выбрасывает сердце в сосуды при своем сокращении.

Определение наполнения пульса: исходное положение пальпирующей руки (см. выше): проксимально размещенным пальцем надавливают на стенку лучевой артерии, а в это время дистально расположенным пальцем пальпируют и определяют характер артерии (когда она не наполнена кровью); затем проксимально расположенный палец приподнимают, уменьшая давление на сосуд, а дистально расположенный палец получает пальпаторное ощущение в момент максимального наполнения артерии кровью и по степени наполнения артерии определяетполный или пустой пульс. При хорошем наполнении чувствуем под пальцами высокую пульсовую волну, а при плохом – малые пульсовые волны.

Величина пульса . Величина пульсового толчка объединяет наполнение и напряжение пульса. Она зависит от степени расширения артерии во время систолы и от ее спадания в момент диастолы. Это в свою очередь зависит от наполнения пульса, величины колебания артериального давления и эластичности сосуда. При увеличении ударного объема крови, значительном колебании давления в артерии и снижении тонуса стенки артерии величина пульсовой волны растет, и пульс становитсябольшим иливысоким . Снижение ударного объема, амплитуды колебаний артериального давления, повышение тонуса стенки артерии уменьшают величину пульсовых волн –малый пульс. При острой сердечной недостаточности, шоке, значительной кровопотере величина пульса становится такой незначительной, что его едва можно определить – этонитевидный пульс.

Форма (скорость) пульса – это скорость изменения объема пальпируемой артерии. При быстром растяжении стенки артерии и таком же быстром ее спадании определяетсябыстрый пульс, а при медленном поднятии и медленном спадании пульсовой волны –медленный пульс.

Регистрация пульса . Частоту, ритм, наполнение и напряжение пульса записывают ежедневно в истории болезни, а на температурном листке частоту пульса отмечают красным цветом с последующим изображением в виде кривой линии, аналогично температуре тела. Необходимо помнить, что на шкале «П» (пульс) есть деления частоты пульса от 50 до 160 ударов в минуту. При значениях частоты пульса от 50 до 100 ударов «цена» одного деления равняется 2, а при значениях частоты пульса свыше 100 ударов в минуту «цена» одного деления равняется 4.

Наиболее важными для оценки состояния здоровья человека являются аритмии, которые встречаются преимущественно при заболеваниях сердечной мышцы или проводящей системы сердца, реже – в результате расстройства деятельности блуждающего или симпатического нервов. К таким видам аритмий относят экстрасистолию и мерцающую аритмию. Экстрасистолическая аритмия , при которой между двумя очередными сокращениями сердца возникает дополнительная систола (экстрасистола); пауза, возникающая за экстрасистолой (компенсаторная пауза), является значительно длиннее обычной. Экстрасистолы могут быть одинокие и групповые. Приступы тахикардии, длящиеся от нескольких секунд до нескольких дней, называютпароксизмальной тахикардией. Мерцающая аритмия характеризуется отсутствием закономерности ритма и наполнения пульса, малые и большие пульсовые волны возникают хаотически, что свидетельствует о тяжелом повреждении миокарда. Часто при мерцающей аритмии может развитьсядефицит пульса, при котором не все сердечные сокращения выталкивают в артерии достаточное количество крови, а некоторые сокращения настолько слабы, что пульсовая волна не достигает периферических артерий и не определяется пальпаторно. Поэтому при мерцающей аритмии обязательно нужно посчитать сначала частоту сердечных сокращений, а затем частоту пульса на лучевые артерии – разница между этих два показателей и определяет дефицит пульса.

Артериальное давление (АД) – это сила, с которой кровь оказывает давление на стенки артерий и на нижерасположенную жидкость. Измерение АД является важным диагностическим методом, отображающим силу сокращения сердца, поступление крови в артериальную систему, сопротивление и эластичность периферических сосудов. На уровень АД влияет величина и скорость сердечных выбросов, частота и ритм сердечных сокращений, периферическое сопротивление стенок артериол. АД, возникающее в артериях во время систолы желудочков и максимального повышения пульсовых волн, называетсясистолическим, а давление, которое поддерживается в артериях во время диастолы в результате снижения их тонуса, – диастолическим. Разница между систолическим и диастолическим давлением называетсяпульсовым давлением.

В настоящее время существуют прямые и непрямые методы измерения АД. Прямые методы применяются в кардиохирургии. Среди методов в клинической практике общепринятым является аускультативный метод с помощью ртутного, мембранного или электронного сфигмоманометра, который является наиболее точным. Сфигмоманометр состоит из манжеты шириной 14 см, сдавливающий артерию при нагнетании воздуха, ртутного столба мембранного манометра, резиновой груши, с помощью которой происходит нагнетание воздуха в манжету. Для определения артериальных тонов используют фонендоскоп.

При исследовании АД необходимо придерживаться следующих требований:

· за 30 минут до измерения АД не курить, не принимать спиртные напитки, крепкий чай, кофе, не употреблять лекарства с кофеином, адреностимуляторы;

· в течение 1 часа до измерения АД не заниматься спортом;

· в случае приема антигипертензивных препаратов измерения АД нужно проводить по окончании действия лекарств, перед приемом следующей дозы;

· при первичном исследовании измерения проводить на обеих руках, в последующем измерять АД там, где выше давление; при одинаковом уровне АД на обеих руках, измерение АД проводить на правой руке.

Методика измерения АД:

- исследования проводят в тихом помещении;

- больной лежит или сидит, находясь в удобном, расслабленном состоянии (напряжение мышц конечностей, брюшного пресса ведет к повышению АД);

- измерения проводят сначала на правой руке, освободив руку от тесной одежды;

- рука исследуемого по возможности должна быть расположена на уровне его сердца;

- при диаметре плеча менее 42 см используется стандартная манжета, при диаметре больше 42 см – специальная;

- манжету нужно расположить на 2-3 см выше локтевого изгиба;

- манжета должна плотно облегать плечо, но не приводить к сдавлению;

- резиновая трубка, которая соединяет манжету с аппаратом и баллоном, должна находиться латерально по отношению к пациенту;

- при нагнетании воздуха в манжету пальпируют пульс на лучевой артерии и следят за столбиком ртути; после исчезновения пульса давление повышают на 20-30 мм рт. ст.;

- скорость снижения давления в манжете 2 мм рт.ст. в секунду (при аритмиях необходима медленная декомпрессия, потому что возможен аускультативный интервал – 5-10 мм рт.ст.);

- систолическое АД определяется при появлении пульсации, диастолическое АД – при ее исчезновении;

- определяется результат измерения по ближайшей парной цифре с точностью 2 мм рт.ст., которая равняется одному делению шкалы;

- АД измеряется дважды с интервалом 2-3 минуты;

- за уровень АД в исследуемого принимают среднюю цифру из двух измерений.

Результаты измерения АД ежедневно записывают в историю болезни в виде дроби: в числителе – систолическое АД, в знаменателе – диастолическое АД, а также регистрируют в температурном листке (шкала «АД») в виде столбиков: систолическое АД отмечают красным столбиком, а диастолическое АД – синим («цена» одного деления на шкале «АД» равняется 5 мм рт.ст.).

В норме цифры АД находятся в пределах от 100/60 до 139/89 мм рт.ст. В зависимости от разных физиологичных процессов (усталость, возбуждение, прием еды и т.д.) уровень АД может изменяться. Его суточные колебания – в пределах 10-20 мм рт.ст. Утром давление ниже, чем вечером. С возрастом АД немного повышается. Повышения АД сверх норм (>140/90 мм рт.ст.) называютартериальной гипертензией , а снижение –артериальной гипотензией . Классификация артериальной гипертензии по уровню артериального давления представлена в таблице 6.1.

Таблица 6.1

Классификация артериальной гипертензии по уровню артериального давления

Систолическое АД (мм рт.ст.)

Диастолическое АД (мм рт.ст.)

Оптимальное

< 120

Нормальное

< 130

Высокое нормальное

Гипертензия

1 степень (мягкая)

Подгруппа: пограничная

2 степень (умеренная)

3 степень (тяжелая)

Изолированная систолическая гипертензия

Подгруппа: пограничная

Первая доврачебная помощь больным при повышении и снижении АД. Резкое повышение АД может возникнуть в результате психической травмы или нервного перенапряжения, при применении некоторых гипотензивных препаратов у больных с артериальной гипертензией. Наиболее постоянным симптомом является резкая головная боль, сочетающаяся с головокружением, шумом в ушах, часто с тошнотой и рвотой, носовыми кровотечениями. Интенсивность боли такова, что больному трудно выдерживать незначительный шум, разговаривать, вращать головой.

Первая доврачебная помощь при повышении АД :

1) измерить АД и определить основные параметры пульса;

2) вызывать врача;

3) положить больного в кровати с поднятым изголовьем и обеспечить ему полный физический и психический покой;

4) обеспечить доступ свежего воздуха (можно ингаляцией кислорода);

5) поставить горчичники на затылок и икроножные мышцы;

6) сделать горячие или горчичные ножные ванны, теплые ванны для рук, холодный компресс к голове;

7) приготовить необходимые лекарственные препараты.

После криза поменять пациенту нательное белье; объяснить ему, что после гипотензивной терапии следует полежать в течение 2-3 часов, чтобы предотвратить коллапс. Измерять АД в течение 2-3 часов.

Снижение АД является важным диагностическим признакомострой сосудистой недостаточности , которая имеет следующие формы:обморок, коллапс, шок .

Обморок – внезапная кратковременная потеря сознания, вызванная ишемией головного мозга. Иногда обмороку предшествует полубессознательное состояние – внезапная слабость, головокружение, потемнение в глазах, звон в ушах, тошнота, потом пациент теряет сознание и падает.

Приколлапсе и шоке наблюдается выраженное и длительное снижение АД, тахикардия, периферические признаки нарушения кровообращения. Причиной развития коллапса может быть кровотечение, заболевания сердечно-сосудистой системы, инфекционные заболевания (пищевая токсикоинфекция, крупозная пневмония). Коллапс представляет непосредственную угрозу жизни больного и требует немедленной терапии.

Клиника коллапса : внезапное начало, жалобы на сильную слабость и зябкость, лицо Гиппократа (исхудавшее лицо, запавшие глаза, кожа сухая, бледно-землистого цвета, цианоз), низкое положение больного в постели, безразличие к окружающему; конечности холодные на ощупь с цианотическим оттенком кожи (периферический признак коллапса), дыхания ускоренное, поверхностное; пульс очень частый, слабого наполнения и напряжения («нитевидный»), вены спадаются, АД резко снижено.

Первая доврачебная помощь больному при снижении артериального давления . Поскольку в механизме развития коллапса важную роль играют снижения тонуса сосудов и уменьшение венозного возврата к сердцу, безотлагательные мероприятия должны быть направлены в первую очередь на повышение венозного и артериального тонуса и увеличения объема жидкости в кровеносном русле. В первую очередь больного укладывают горизонтально, без высокой подушки (иногда с поднятыми ногами); вводят подкожно сосудистые препараты, которые возбуждают сосудодвигательный и дыхательный центры (кордиамин, мезатон, стрихнин).

Снижение АД является важным диагностическим признаком острой сосудистой недостаточности (обморок, коллапс).Обморок – кратковременная потеря сознания в результате малокровия головного мозга. Причинами обморока могут быть анемия, пороки сердца, блокада сердца, резкое изменение положения тела, пребывания в положении, стоя в течение длительного времени, негативные эмоции, сильная боль, голодание.

Основные клинические симптомы обморока: бледность и влажность кожи, редкое поверхностное дыхание, снижение АД, пульс слабого наполнения и напряжения, зрачки умеренно расширены, активно реагирует на свет.

Первая доврачебная помощь больному : 1) больного укладывают горизонтально с поднятыми ногами на 45°; 2) обеспечивают доступ свежего воздуха; 3) освобождают шею и грудь от сжимающей одежды; 4) обрызгивают лицо холодной водой; 5) дают понюхать тампон, смоченный раствором аммиака; 6) похлопывают по щекам; 7) растирают тело куском сукна.

Коллапс – острая сосудистая недостаточность, связанная с выраженным и длительным снижением тонуса сосудов и уменьшением объема циркулирующей крови. Причинами коллапса могут быть кровопотеря, инфаркт миокарда, тромбоэмболия легочной артерии, инфекционные и острые воспалительные заболевания, травмы, медикаментозная аллергия.

Основные клинические симптомы: внезапное начало, нарушение сознания, лицо Гиппократа (бледно-землистого цвета с заостренными чертами лица), безразличие к окружающему, снижение температуры тела; бледность кожных покровов, конечности холодные на ощупь с цианотичным оттенком кожи (периферический признак коллапса), поверхностное частое дыхание; пульс очень частый, слабого наполнения и напряжения («нитевидный»), низкое АД.

Первая доврачебная помощь больному при снижении АД : 1) устраняют причины возникновения коллапса (останавливают кровотечение, выводят яд из организма); 2) согревают больного; 3) дают дышать кислородом; 4) в горизонтальном положении быстро транспортируют больного в соответствующее отделение больницы; 5) вводят лекарства, которые повышают АД (адреналин, мезатон, глюкокортикоиды).

Кровотечение и основные правила его остановки

Кровотечение – это вытекание крови из своего русла в ткани и полости организма или наружу. В норме количество крови у человека составляет 7 % или 1/13 массы тела, из них 80 % крови циркулирует в сердечно-сосудистой системе, а 20 % находится в паренхиматозных органах (печень, селезенка, костный мозг). Уменьшение объема циркулирующей крови (ОЦК) на 30-50 % приводит к развитию тяжелых нарушений в организме, которые называют критическим состоянием. Потеря половины и больше от общего количества крови является смертельной. Особенно трудно переносят кровопотерю дети и люди пожилого возраста.

Причиной кровотечения является: нарушение целостности стенок сосудов в результате заболеваний, ранений или повреждений, приводящих к развитию гиповолемии и сложному комплексу гемодинамических расстройств. В зависимости от принципа, положенного в основу классификации, выделяют артериальное, венозное, капиллярное и паренхиматозное кровотечения, отличающиеся особенностями клинической картины и способами остановки.

При внешнемартериальном кровотечении кровь вытекает струйкой, высота которой изменяется с каждой пульсовой волной, кровь ярко-красного цвета.Венозное кровотечение характеризуется непрерывным вытеканием струйки темной крови; при ранении больших вен при высоком внутривенном давлении кровь также может вытекать струйкой, но она не пульсирует. Прикапиллярных и паренхиматозных кровотечениях кровоточит вся раневая поверхность, мелкие сосуды и капилляры. При повреждении паренхиматозных органов чаще возникает смешанное кровотечение, которое долго не останавливается и часто приводит к острой анемии.

При возникновении кровотечения для спасения жизни потерпевшему необходимо остановить кровотечение и восполнить кровопотерю. Различают временную и окончательную остановки кровотечения. Временную остановку осуществляют медицинские работники, сам пострадавший или очевидцы несчастного случая.

Основные виды остановки кровотечения : временная – тугая повязка, пальцевое прижатие, тугая тампонада раны, максимальное сгибание конечностей, циркулярное перетягивание с помощью резинового жгута; окончательная – перевязывание сосуда в ране или за ее пределами в условиях операционной (рис. 6.2).

д Рис. 6.2. Виды остановки кровотечения:

а, б) пальцевое прижатие артерии; в) циркулярное перетягивание артерии; г) накладывание жгута; д)

максимальное сгибание конечностей.

Тугая повязка – метод временной остановки кровотечения, который применяют при незначительных кровотечениях из мягких тканей, имеющих костную основу. Кожу вокруг раны обрабатывают 5 % раствором йода, на рану накладывают подушечку индивидуального перевязочного пакета и крепко фиксируют бинтом, придерживаясь общих правил бинтования. Конечности фиксируют в таком положении, в котором они будут оставаться после наложения повязки: руку обычно сгибают под прямым углом в локтевом суставе, а ногу – в коленном; ступню фиксируют в положении под прямым углом к голени. Тугая повязка, как правило, круговая – все круги бинта послойно налагают на одно и то же место. При отсутствии бинта или перевязочного пакета можно использовать чистую проглаженную ткань, лоскуты из простыни, полотенца и др.

Пальцевое прижатие артерии – метод экстренной кратковременной остановки кровотечения, который применяют лишь в определенных анатомических точках, где сосуды размещены поверхностно и близко от костей, к которым их можно прижать (рис. 6.2 а). Если просвет сосуда полностью перекрыт, пульсация артерии на нижележащем участке прекращается и кровотечение останавливается. Прижатие сосудов можно выполнить несколькими пальцами одной кисти, большими пальцами обеих кистей, ладонью или кулаком. Длительное прижатие сосудов осуществляют большими пальцами обеих рук: ставят один палец на второй и по очереди используют силу давления пальцев на сосуды.

При ранениях конечностей сосуды прижимают выше раны, при повреждении сосудов шеи – ниже. Кровотечение из ран головы и шеи останавливают с помощью прижатияобщей сонной артерии на середине заднего края кивательной мышцы к поперечным отросткам шейных позвонков, в частности к бугорку шестого шейного позвонка – С VI (рис. 6.2б).

Внешнюю челюстную артерию прижимают к нижнему краю нижней челюсти на границе ее задней и средней трети. Височную артерию прижимают на виске. Кровотечение в верхнем отделе плеча останавливают прижиманиемподключичной артерии до 1 ребра. Для этого руку пострадавшего опускают книзу и отводят назад, после чего прижимают артерию за ключицей.


Рис. 6.3. Места пальцевого прижатия артерий для остановки артериального кровотечения:

а) схема магистральных сосудов человека; б) внутренней сонной артерии; внешней сонной артерии; в) надключичной артерии; д) подчелюстной артерии; е) височной артерии; ж, з) плечевой артерии; и) аксиллярной артерии.

Подмышечную артерию прижимают в подмышечной ямке к головке плечевой кости (рис. 6.3 и) При кровотечении с плеча и предплечья плечевую артерию прижимают пальцами к плечевой кости около внутреннего края двуглавой мышцы.Лучевую артерию прижимают к лучевой кости в месте определения пульса,локтевую – к локтевой кости. При кровотечении на бедре и голенибедренную артерию прижимают на середине паховой связки и ниже от нее к горизонтальной ветви лобковой кости. Этот сосуд можно фиксировать также между верхней передней остью подвздошной кости и лобковым симфизом.Подколенную артерию прижимают к середине подколенной ямки,тыльную артерию – к тыльной ее поверхности посередине между внешней и внутренней косточками (ниже от коленного сустава). При ранениибрюшной аорты временная остановка кровотечения удается сильным прижатием брюшного отдела аорты к позвоночному столбу кулаком (слева от пупка).

Тугая тампонада раны – метод временной остановки кровотечения, применяемый при глубоких кровоточащих ранах, когда пальцевое прижатие невозможно. Пинцетом туго заполняют рану стерильным марлевым тампоном или прикладывают к ране специальную кровоостанавливающую губку, которую прижимают марлевым тампоном. Потом накладывают тугую сжимающую повязку, к которой в области раны кладут мешочек со льдом.


Рис. 6.4. Остановка кровотечения путем максимального сгибания конечностей:

а) схема остановки кровотечения, б) сжатие подключичной артерии, в, г) плечевой артерии, д) бедренной артерии, е) артериальных столбов бедра и ступни.

Максимальное сгибание конечностей – метод временной остановки кровотечения, используемый при кровотечении из ран около основания конечности, которую фиксируют в состоянии максимального сгибания, чтобы сжать магистральные сосуды (рис. 6.4).

Для усиления давления на сосуд под колено или в подмышечную ямку необходимо положить плотный валик из ткани. При ранении подключичной артерии или кровотечения из раны верхней конечности пережимают подключичную или плечевую артерии. Для сжатияподключичной артерии согнутые в локтях руки отводят назад и фиксируют их в таком положении несколькими оборотами бинта (рис. 6.4 б).Плечевую артерию и ее ответвление перекрывают путем максимального сгибания руки в локтевом суставе и фиксирования ее в таком положении. Этот прием может быть применен при артериальном кровотечении из сосудов предплечья и кисти (рис. 6.4 в, г).

При кровотечении из бедреннойартерии ногу максимально сгибают в бедренном суставе и прибинтовывают к туловищу (рис. 6.4 е). При кровотечении из артериальныхстволов голени и ступни сжимают подколенную артерию (рис. 6.4 д). Для этого в подколенную ямку вкладывают плотно скрученный валик, потом максимально сгибают ногу в коленном суставе и фиксируют ее в таком положении несколькими оборотами бинта или ремнем.

Циркулярное перетягивание – самый распространенный и самый надежный метод временной остановки кровотечения на конечностях, который выполняют с помощью стандартного резинового жгута, резиновой трубки или импровизированного жгута-закрутки (рис. 6.5).

Кровоостанавливающий жгут представляет собой резиновую ленту длиной 125 см, в ширину 3-4 мм. На одном конце ленты есть крючок, на втором – металлическая цепочка.


Рис. 6.5. Порядок остановки кровотечения путем циркулярного перетягивания:

а, б) наложение импровизированного жгута-закрутки, в) фиксация жгута-закрутки.

Жгут накладывают на плечо и бедро, за исключением: верхней трети плеча (можно травмировать лучевой нерв), нижнюю треть бедра (пережатие бедренной артерии сопровождается повреждением мягких тканей), нижние трети предплечья и голеней (артерии проходят между костей и их не удается сжать, кроме того в этих местах нет мышц и под жгутом может развиться некроз кожи) (рис. 6.6).

Рис. 6.6. Наложение кровоостанавливающего жгута.

Правила наложение кровоостанавливающего жгута :

· Жгут накладывают поверх одежды или на ровную прокладку, без складок, чтобы не защемить кожу между его витками, по возможности ближе к ране.

· Одной рукой захватывают конец жгута, второй – его середину и, сильно растянув, обводят 2-3 раза вокруг конечности; свободные концы жгута завязывают узлом или закрепляют с помощью крючка и цепочки.

· К жгуту или к одежде пострадавшего прикрепляют записку с обозначением времени его наложения.

· Если жгут наложен правильно, кровотечение из раны прекращается, конечность становится бледной и холодной, периферический пульс не определяется.

· В холодное время года после наложения жгута конечность нужно обвертеть теплым одеялом, чтобы не произошло обморожение.

· После наложения жгута проводят иммобилизацию конечности транспортной шиной, вводят обезболивающие средства и госпитализируют больного.

· Жгут можно оставлять на конечности не дольше, чем 1,5 часы, а в холодное время года – 30 минут.

· Если за это время кровотечение не прекратилось, жгут нужно ослабить на несколько минут, а затем опять затянуть. В целом жгут может быть наложен на конечность не больше, чем на 2 часа.

· Если жгут необходимо держать дольше, его нужно снять и наложить на 1,5-2 см выше. Во время расслабления жгута проводят пальцевое прижимание магистрального сосуда.

Осложнения, которые предопределены неправильно наложенным жгутом: нарушение двигательной функции конечности в результате травмы нервных стволов (паралич), венозный застой в конечности, усиление венозного кровотечения, омертвение ткани, развитие гангрены. Ошибкой является наложение жгута при венозном или капиллярном кровотечении, когда можно обойтись тугой повязкой.

Определение основных показателей дыхания

При уходе за больными с заболеваниями органов дыхания необходимо следить за частотой, глубиной и ритмом дыхания. В норме дыхания у человека беззвучное и незаметное для окружающих. Человек обычно дышит через нос с закрытым ртом. У взрослого человека в покое частота дыхательных движений 16-20 в минуту, причем вдох в 2 раза короче выдоха. Дыхание характеризуется частотой, ритмом, глубиной и периодичностью.

Частота дыхания . Определение числа дыхательных движений (ЧДД) проводится подсчетом движений грудной или брюшной стенки в течение 1 минуты. Подсчет проводят незаметно для больного, держа его за руки, как для подсчета пульса. Полученные результаты ежедневно заносят в температурный листок синим карандашом в виде графика частоты дыхания. Частота дыхания зависит от возраста, пола, положения. У взрослого человека в покое она составляет 16-20 дыхательных движений в минуту. У женщин ЧДД немного больше, чем у мужчин. У младенцев число дыхательных движений достигает 40-45 в минуту, с возрастом оно уменьшается и к 20 годам достигает частоты взрослого человека. В положении стоя частота дыхания больше (18-20), чем в положении, лежа (12-14). У спортсменов дыхание составляет 8-10 дыхательных движений в минуту. Изменение дыхания по частоте: учащенное – тахипноэ и редкое – брадипноэ.

Тахипноэ – частое дыхание, обусловленное дисфункцией дыхательного центра. В физиологичных условиях (волнение, физическая нагрузка, прием еды) тахипноэ кратковременное и быстро проходит после прекращения провоцирующего фактора.

Патологическое тахипноэ может быть вызвано следующими причинами:

§ поражение легких, сопровождающееся: уменьшением их дыхательной поверхности; ограничением экскурсии легких в результате снижения эластичности легочной ткани; нарушением газообмена в альвеолах (накоплением углекислоты в крови);

§ поражение бронхов, сопровождающееся затруднением доступа воздуха в альвеолы и частичной или полной закупоркой их просвета;

§ поражение дыхательных мышц и плевры, сопровождающееся затрудненным сокращением межреберных мышц и диафрагмы в результате резких болей, параличом диафрагмы, повышения внутрибрюшного давления, которое является одной из причин снижения дыхательной экскурсии легких;

§ поражение центральной нервной системы, обусловленная его интоксикацией и нарушением дыхательного центра.

§ патология сердечно-сосудистой системы и органов кроветворения, сопровождающаяся развитием гипоксемии.

Чаще всего учащение дыхания обусловлено сочетанием нескольких причин. Например, при крупозной пневмонии причинами учащения дыхание является уменьшение дыхательной поверхности легких (скопление в альвеолах экссудата, отечность альвеолярных стенок), боль в грудной клетки при дыхании (в результате развития сопутствующего плеврита), интоксикация центральной нервной системы (токсинами, циркулирующих в крови).

Таким образом, учащение дыхания может быть обусловлено не только патологией органов дыхания, но и нарушениями со стороны сердечно-сосудистой и нервной систем. Для дифференциальной диагностики тахипноэ используют соотношение частоты дыхательных движений (ЧДД) и частоты сердечных сокращений (ЧСС). У здоровых лиц соотношения ЧДД/ЧСС составляет 1:4 то есть ЧЧС опережает ЧДД; при заболеваниях органов дыхания соотношения ЧДД/ЧСС составляет 4:2, то есть ЧДД опережает ЧСС; при высокой лихорадке, наоборот, ЧСС намного опережает ЧДД.

Брадипноэ – урежение дыхания, обусловленное снижением возбудимости дыхательного центра. Физиологичное брадипноэ может наблюдаться во время сна, гипноза.

Патологически урежение дыхания наступает при угнетении дыхательного центра и снижении его возбудимости, вызванное рядом причин, в первую очередь, поражением ЦНС: повышение внутричерепного давления (опухоль мозга, спаечный процесс, грыжи); нарушение гемодинамики и развитие гипоксии (инсульт, отек мозга, агония); экзо- и эндоинтоксикации (менингит, уремия, печеночная и диабетическая кома); применение анестетиков и других лекарственных форм (отравление морфием).

Выраженное брадипноэ наблюдается при хронических обструктивных заболеваниях легких (хронический обструктивный бронхит, эмфизема легких, бронхиальная астма). У этих больных наблюдается форсированный (усиленный) выдох при участии вспомогательных мышц шеи, плечевого пояса. К разновидности уреженного дыхания относитсястридорозное дыхание – редкое громкое дыхание, обусловленное резким сдавлением гортани (опухолью, увеличенным зобом, отеком гортани, реже – аневризмой аорты).

Глубина дыхания. Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в состоянии покоя. У здорового человека в физиологичных условиях объем дыхательного воздуха составляет 500 мл. В зависимости от изменения глубины дыхательных движений различают поверхностное и глубокое дыхание.

Поверхностное дыхание (гипопноэ) наблюдается при патологическом учащении дыхания за счет укорачивания обеих фаз дыхания (вдоха и выдоха). Глубокое дыхание (гиперпноэ) чаще сочетается с патологическим урежением дыханием. Например, "большое дыхание Куссмауля" или "воздушный голод" – редкое, глубокое, громкое дыхание, обусловленное развитием метаболического ацидоза с последующим раздражением кислыми продуктами дыхательного центра; наблюдается у больных диабетической, уремической и печеночной комами.

Ритм дыхания . Дыхание здорового человека ритмично, одинаковой глубины, длительностью и чередованием фаз вдоха и выдоха. При поражении центральной нервной системы дыхание становится аритмичным: отдельные дыхательные движения разной глубины происходят то чаще, то реже. Иногда при аритмичном дыхании через определенное количества дыхательных движений появляется удлиненная пауза или кратковременная задержка дыхания (апноэ). Такое дыхание называетсяпериодическим. К нему относятся такие патологические типы дыхания: дыхание Чейна-Стокса, волнообразное дыхание Грокка и дыхание Биота.

Дыхание Чейн-Стокса – периодическое патологическое дыхание, характеризуется длительной (от несколько секунд до 1 минуты) дыхательной паузой (апноэ), после которой бесшумное поверхностное дыхание быстро нарастает по своей глубине, становится громким и достигает максимума на 5-7 вдохе, потом в той же последовательности дыхания убывает и заканчивается следующей кратковременной паузой (апноэ). Больной во время паузы плохо ориентируется в окружающей среде или может полностью потерять сознание, которое возвращается при возобновлении дыхательных движений. Дыхание Чейн-Стокса обусловлено снижением возбудимости дыхательного центра, острой или хронической недостаточностью мозгового кровообращения, гипоксией мозга, тяжелой интоксикацией и является прогностически неблагоприятным признаком. Часто проявляется во сне у людей пожилого возраста с выраженным церебральным атеросклерозом, у больных с хронической недостаточностью мозгового кровообращения, хронической почечной недостаточностью (уремия), приемом наркотических средств (морфий).

"Волнообразное дыхание" Грокка или диссоциированное дыхание, характеризуется волнообразным изменением глубины дыхания и отличается от дыхания Чейн-Стокса отсутствием периодов апноэ. Дыхание Грокка обусловлено поражением координационного центра дыхания, вызвано хроническим нарушением мозгового кровообращения. Чаще наблюдается при абсцессе головного мозга, менингите, опухоли мозга.

Дыхание Биота – периодическое патологическое дыхание, характеризующееся ритмичными, но глубокими дыхательными движениями, которые чередуются через равные промежутки времени длительной (от нескольких секунд до полминуты) дыхательной паузой. Дыхание Биота обусловлено глубоким расстройством мозгового кровообращения и наблюдается у больных менингитом и при агонии.

Таким образом, выявленные при статическом осмотре нарушение частоты, ритма, глубины или появление патологических форм дыхания (Чейн-Стокса, Биота, Грока, Куссмауля) является характерными симптомами поражения дыхательной системы.

Одышка – чувство нехватки воздуха, сопровождающееся нарушением дыхания по частоте, ритму и глубине, в основе которого лежит развитие гипоксии тканей.

Различают физиологичную и патологическую одышку.Физиологичная одышка – это компенсаторная реакция организма со стороны дыхательной системы в ответ на значительную физическую или эмоциональную нагрузку. Физиологическая одышка проявляется в виде непродолжительного частого и глубокого дыхания, самостоятельно проходит в покое в течение 3-5 минут и не сопровождается неприятными ощущениями.

Патологическая одышка – более стойкое нарушение частоты, ритма и глубины дыхания, сопровождающееся неприятными ощущениями (сжатие в груди, чувство нехватки воздуха) и обусловленная поражением разных органов и систем, в первую очередь дыхательной и сердечно-сосудистой.

Основные причины патологической одышки:

I. Нарушение процесса оксигенации крови в легких и обусловлено: а) нарушением проходимости воздухоносных путей; попадание постороннего предмета в дыхательные пути; травмы грудной клетки; врожденные патологии органов дыхания и грудной клетки; б) повреждением паренхимы легких; в) изменениями со стороны плевральной полости, с ограничением дыхательной экскурсии и сдавлением легочной ткани; г) изменениями со стороны тканей грудной клетки, ограничивающие ее подвижность и вентиляцию легких.

II. Нарушение транспорта газов, обусловленное поражением сердечно-сосудистой системы (пороки сердца, кардиосклероз, миокардит, артериальная гипертензия) и органов кроветворения (анемии, лейкозы).

III. Нарушение обмена веществ, сопровождающееся повышенной потребностью организма в кислороде: эндокринные заболевания (тиреотоксикоз, сахарный диабет, болезнь Иценко-Кушинга); злокачественные новообразования.

IV. Нарушение регуляторных механизмов дыхания (заболевание центральной нервной и эндокринной систем).

V. Изменения состава вдыхаемого воздуха (влажность, давление, температура, загрязнения, профессиональные вредности и отравления токсичными веществами и ядами).

Патологическую одышку различают: по отношению к больному (субъективная, объективная, смешанная); по времени появления (постоянная, длительная, приступообразная или пароксизмальная); по структуре дыхательного цикла (инспираторная, экспираторная, смешанная).

Клинически одышка может проявляться субъективными и объективными признаками; отсюда различают одышку: субъективную, объективную и смешанную.Субъективная одышка – нарушение дыхания, проявляющееся субъективным чувством сжатия в груди, нехватке воздуха, затруднением вдоха или выдоха; характерная для истерии, неврастении.Объективная одышка – нарушение дыхания, проявляющееся прерывистой речью (больной при разговоре ловит ртом воздуха), тахипноэ (ЧДД больше 30 в минуту), нарушением ритма дыхания, участием в дыхание вспомогательных мышц (напряжение шейных и трапециевидных мышц), появлением цианоза; наблюдается при заболеваниях легких, сердца, центральной нервной системы, мышечной системы.

В зависимости от структуры дыхательного цикла и особенностей его фаз различают три вида одышки: инспираторную, экспираторную и смешанную.Инспираторная одышка – нарушение дыхания с затрудненным (удлиненным) вдохом. К разновидности инспираторной одышки можно отнестистридорозное дыхание – громкое дыхание с затрудненным вдохом, сопровождающееся свистом (при сильном сужении верхних дыхательных путей и трахеи); наблюдается при попадании постороннего предмета в дыхательные пути или их сдавления извне опухолью, рубцами, увеличенными лимфоузлами.Экспираторная одышка – нарушение дыхание с затрудненным (продленным) выдохом, обусловленное нарушением проходности мелких бронхов и бронхиол (бронхиальная астма, хронический обструктивный бронхит, бронхиолит). В основе механизма экспираторной одышки лежит раннее экспираторное закрытие (спадение) мелких бронхов (коллапс бронхов) в ответ на увеличение линейной скорости вступающего в должность воздуха и уменьшения его бокового давления, которое приводит к спазму бронхов (феномен Бернулли), а также отек слизуватої и скопление в просветительстве бронхов грузлого секрета, который трудно отделяется снижение эластичных свойств бронхиальной стенки.Смешана одышка – нарушение дыхания в виде одновременного затруднения вдоха и выдоха; чаще наблюдается при уменьшении дыхательной поверхности легких (пневмония, гидро- и пневмоторакс, ателектаз легкие, инфаркт легкие), реже при высоком стоянии диафрагмы, которая ограничивает экскурсию легких (беременность, асцит, метеоризм, массивные опухоли брюшной полости, в том числе печенки и селезенки), а также при сочетании поражения сердца и легких.

По периодичности и времени появления выделяют постоянную, периодическую и приступообразную (пароксизмальную) одышку.Постоянная одышка сохраняется в покое и усиливается при наименьшем физическом напряжении; наблюдается при тяжелых формах дыхательной и сердечной недостаточности, эмфиземе легких, пневмосклерозе, пороках сердца. Периодическая (длительная) одышка может развиваться в разгаре тяжелых заболеваний (крупозная пневмония, экссудативный плеврит, обструктивный бронхит, пневмо- и гидроторакс, миокардит, перикардит) и исчезать при выздоровлении. Приступообразная одышка, которая внезапно возникла в виде нападения (астма), наблюдается при бронхиальной и сердечной астме.

Удушье (астма) – внезапный приступ одышки, обусловленный резким нарушением дыхательного центра, является объективным признаком острой дыхательной недостаточности в результате внезапного спазма, отека слизистой оболочки бронхов или попадания постороннего предмета. Основным и характерным клиническим проявлением удушья является его внезапное возникновение, интенсивность; чувство нехватки воздуха, быстрое нарастание объективных признаков дыхательной недостаточности – диффузный цианоз, отек шейных вен, тахипноэ больше 30 в минуту; вынуждено положение – ортопноэ с упором рук (бронхиальная астма) и без упора рук (сердечная астма).

Клиническая характеристика приступа бронхиальной астмы: начинается внезапно в течение суток, но чаще ночью, часто приступу предшествуют предвестники (заложенность носа, чихание, водянистые выделения из носа, сухой кашель, сонливость, зевота, ощущение сжатия в груди и острая нехватка воздуха). Больной не в состоянии вытолкнуть воздух, который переполняет грудную клетку и, чтобы усилить выдох, он садится на кровать и упирается на нее руками, включая, таким образом, в акт дыхания не только дыхательные, но и вспомогательные мышцы плечевого пояса и груди. Некоторые больные возбуждены, подбегают к окну и широко его открывают, становятся около него, опираясь руками на стол, подоконник. Характерным является редкое дыхание с удлиненным шумным выдохом, много сухих дистанционных хрипов. Грудная клетка будто застывает в положении максимального вдоха с поднятыми ребрами и «взрывающимися» междуреберными промежутками. Часто приступ удушья сопровождается кашлем с выделением небольшим количеством вязкой трудноотделяемой стекловидной мокроты, после чего состояние больного улучшается.

Первая доврачебная помощь при удушье : 1) посадить больного или помочь ему принять положение полусидя; 2) освободить грудную клетку от тесной одежды; 3) обеспечить приток свежего воздуха и кислорода; 4) приложить грелку к нижним конечностям. 5) сообщить врачу и выполнить все его назначения после оказания неотложной помощи.

Кашель – рефлекторный защитный акт в виде толчкообразного форсированного звучного выдоха в ответ на раздражение рецепторов дыхательных путей и плевры, является важным симптомом поражения органов дыхания. При сердечной недостаточности возникновение кашля обусловлено застойными явлениями в легких (застойный бронхит, гипостатическая пневмония). Механизм кашля представляет собой глубокий вдох и быстрый, усиленный выдох при закрытой голосовой щели в начале выдоха, по звуковому эффекту сравниваемый с «воздушным выстрелом через суженную голосовую щель».

По ритму выделяют: постоянный, периодический, приступообразный кашель.Постоянный кашель в виде отдельных кашлевых толчков (покашливание), наблюдается при хроническом ларингите, трахеите, бронхите, начальной форме туберкулеза, недостаточности кровообращения, иногда при неврозах, часто у курильщиков в утренние часы.Периодический (бронхолегочной) кашель в виде следующих друг за другом кашлевых толчков, повторяющихся с некоторыми промежутками; наблюдается при хронических заболеваниях (в период обострения): бронхиты, туберкулез легких.Приступообразный кашель с быстро следующими друг за другом кашлевыми толчками, которые перерываются громким выдохом; наблюдается при попадании в дыхательные пути постороннего предмета, коклюше, кавернах, поражении бронхиальных лимфоузлов.

По тембру выделяют кашель: осторожный, лающий, сиплый, беззвучный.Осторожный короткий кашель, который сопровождается болезненной гримасой, наблюдается при сухом плеврите, начале крупозной пневмонии.Лающий кашель – громкий, отрывистый, сухой, обусловленный отеком преимущественно ложных или одновременно ложных и истинных голосовых связок; наблюдается при ларингите, а также, сдавлении трахеи (опухолью, зобом), истерии.Сиплый кашель обусловлен поражением истинных голосовых связок; наблюдается при ларингите.Беззвучный кашель обусловлен язвой и разрушением голосовых связок (рак, туберкулез, сифилис гортани) или параличом их мышц, приводящий к недостаточному смыканию голосовой щели. Также беззвучным становится кашель при резкой общей слабости у больных с тяжелыми истощающими болезнями.

По характеру различают кашель: непродуктивный (сухой, без мокроты) и продуктивный (влажный, с мокротой).Сухой (непродуктивный) кашель без выделения мокроты; встречается, при так называемых, сухих бронхитах, ранней стадии пневмонии (особенно вирусной), инфаркте легкие, который начинается приступом бронхиальной астмы, плеврите, эмболии мелких ветвей легочной артерии.Влажный (производительный) кашель сопровождается выделением мокроты; характерный для острой стадии бактериальной или вирусной инфекции (бронхит, пневмония, трахеит); полостных образований в легких (бронхоэктазы, абсцесс, рак в стадии распада, кавернозной форме туберкулезе). Количество, характер, цвет и запах мокроты имеет важное диагностическое значение при заболеваниях бронхолегочной системы.

По времени появления различают кашель: утренний, вечерний, ночной.Утренний кашель – «кашель при умывании» (5-7 часов утра) обусловлен накоплением за ночь мокроты и затрудненным ее отхождением; наблюдается при хронических воспалительных процессах верхних дыхательных путей (носоглотки, придаточных пазух, зева, гортани, трахеи); у больных с полостными образованиями в легких, у алкоголиков и курильщиков.Вечерний кашель обусловлен ваготонией в вечерние часы; наблюдается при бронхитах, пневмонии.Ночной кашель связан с ночной ваготонией; наблюдается при увеличении бронхолегочных лимфоузлов, туберкулезе легких.

Первая доврачебная помощь при кашле: 1) создать больному удобное положения (сидя или полусидя), при котором уменьшается кашель; 2) дать теплое питье, желательно молоко с натрия гидрокарбонатом или с минеральной водой типа боржом; 3) тепло укрыть, чтобы предотвратить переохлаждение; 4) обеспечить приток свежего воздуха; 5) если кашель сопровождается выделением значительного количества мокроты, несколько часов в сутки предоставлять больному дренажное положение, способствующее лучшему отхождению мокроты; 6) научить больного правильно обращаться с мокротой, собирать мокроту только в плевательницу или баночку с плотной крышкой.

Контрольные вопросы

  1. Как определить пульс на лучевой артерии?
  2. Дать характеристику основных свойств пульса.
  3. Правила и методы определения артериального давления.
  4. Нормативные показатели артериального давления.
  5. Первая доврачебная помощь при повышении артериального давления.
  6. Первая доврачебная помощь больному при снижении артериального давления.
  7. Назвать основные виды остановки кровотечения
  8. Правила наложение кровоостанавливающего жгута
  9. Как определить частоту дыхательных движений?
  10. Какие виды одышки Вы знаете? Их диагностическое значение.
  11. Назовите патологические типы дыхания, их характеристику и диагностическое значение.
  12. Первая доврачебная помощь при удушье.

М.Ю. Киров

М.Ю. Киров, доктор медицинских наук. Северный государственный медицинский университет, Архангельск

Мониторинг гемодинамики является одной из важнейших составных частей современного мониторинга в отделении анестезиологии, реанимации и интенсивной терапии (ОАРИТ). Так, параметры системы кровообращения составляют практически половину из всех компонентов Гарвардского стандарта мониторинга, который служит регламентирующей основой для проведения анестезиологического пособия (табл. 1) [Крафт Т.М., Аптон П.М., 1997].

Таблица 1

Гарвардский стандарт мониторинга

1) Постоянная ЭКГ

2) АД и пульс √ каждые 5 мин.

3) Вентиляция √ минимум 1 из параметров:

  • пальпация или наблюдение за дыхательным мешком;
  • аускультация дыхательных шумов;
  • капнометрия или капнография;
  • мониторинг газов крови;
  • мониторинг выдыхаемого потока газов.

4) Кровообращение √ минимум 1 из параметров:

  • пальпация пульса;
  • аускультация сердечных тонов;
  • кривая артериального давления;
  • пульсоплетизмография;
  • пульсоксиметрия.

5) Дыхание √ аудиосигнал тревоги для контроля дисконнекции дыхательного контура.

6) Кислород √ аудиосигнал тревоги для контроля нижнего предела концентрации на вдохе.

Ведущими принципами мониторинга гемодинамики являются точность, надежность, возможность динамического наблюдения за больным, комплексность, наличие минимального количества осложнений, практичность и дешевизна, а также доступность получаемой информации. На этапах мониторинга становится возможной ранняя диагностика нарушений со стороны системы кровообращения, принятие решения и своевременная коррекция выявленных нарушений.

Минимальный объем мониторинга гемодинамики, который по международным стандартам должен осуществляться в ходе любой анестезии, включает в себя проведение пульсоксиметрии, неинвазивного измерения АД (предпочтительно аппаратным способом) и ЭКГ. Однако многим пациентам ОАРИТ требуется расширенный мониторинг гемодинамики, включающий несколько из представленных ниже компонентов.

Постоянный мониторинг ЭКГ

ЭКГ обеспечивает важной информацией о ЧСС, ритме, проводимости, ишемии миокарда и эффектах назначаемых препаратов. Для оценки сердечного ритма наиболее часто используется стандартное отведение II, однако следует помнить, что оно не обладает высокой чувствительностью в отношении признаков ишемии. Сочетание отведения II с левыми грудными отведениями (отведение V5) повышает чувствительность ЭКГ мониторинга в диагностике изменений сегмента ST с 33% до 80% . Многие современные мониторы автоматически измеряют динамику сегмента ST и выводят на экран тренды, анализирующие выраженность ЭКГ-признаков ишемии, что позволяет своевременно начать назначение нитратов и осуществлять другие лечебные мероприятия.

Пульсоксиметрия

В основе пульсоксиметрии лежат принципы оксиметрии и плетизмографии. В ходе оксиметрии за счет различной способности оксигемоглобина и дезоксигемоглобина абсорбировать лучи красного и инфракрасного спектра рассчитывается насыщение артериальной крови кислородом (SаO2, в норме 95-100%). Это дает возможность оценить адекватность оксигенирующей функции легких, доставки кислорода к тканям и ряда других важных физиологических процессов и обеспечивает своевременное назначение оксигенотерапии, ИВЛ и прочих лечебных мероприятий. Кроме того, пульсоксиметры позволяют осуществлять постоянное измерение ЧСС и демонстрируют на дисплее плетизмограмму √ пульсовую волну, отражающую наполнение капилляров и состояние микроциркуляторного русла. Информативность пульсоксиметрии значительно снижается при расстройствах периферической микроциркуляции. Уменьшение сатурации не следует однозначно рассматривать как признак нарушения микроциркуляции, для уточнения диагноза необходимо выполнить анализ газового состава артериальной крови.

Технология пульсоксиметрии привела к появлению таких новых методов мониторинга, как измерение сатурации кислородом смешанной венозной крови и крови из центральной вены, позволяющих детально оценить транспорт кислорода и его потребление тканями и целенаправленно назначить инотропную и инфузионную терапию. Неинвазивная оксиметрия головного мозга дает возможность определить регионарное насыщение гемоглобина кислородом в мозге (rSO2, в норме приблизительно 70%). Доказано, что при остановке кровообращения, эмболии сосудов головного мозга, гипоксии и гипотермии, происходит выраженное снижение rSO2 [Морган Д.Э., Михаил М.С., 1998].

Артериальное давление (АД)

Методика и частота измерения АД определяются состоянием больного и видом хирургического вмешательства. При стабильной гемодинамике, как правило, достаточно неинвазивного измерения АД, предпочтительно аппаратным способом. Основные показания к инвазивному мониторингу АД включают следующие состояния:

1) быстрое изменение клинической ситуации у больных, находящихся в критическом состоянии (шок, рефрактерный к инфузионной терапии, острое повреждение легких, состояние после сердечно-легочной реанимации и др.);

2) применение вазоактивных препаратов (инотропы, вазопрессоры, вазодилататоры, анестетики, антиаритмики и др.);

3) высокотравматичные хирургические вмешательства (кардиохирургия, нейрохирургия, операции на легких и др.);

4) забор артериальной крови для анализов (газы крови, общие исследования).

Инвазивный мониторинг АД осуществляется при помощи катетеризации артерии (как правило, лучевой или бедренной). Это позволяет получать информацию о систолическом, диастолическом и среднем АД в каждый отдельно взятый момент времени. Кривая АД предоставляет непосредственную информацию о гемодинамическом эффекте аритмии. К тому же по крутизне анакроты можно косвенно судить о постнагрузке и сократительной способности миокарда. Основная цель лечебных мероприятий на основе мониторинга АД √ поддержание среднего АД, отражающего перфузионное давление различных органов, на уровне 70-90 мм рт. ст.

Все системы прямого измерения АД создают артефакты, которые обусловлены неадекватным соединением, попаданием пузырьков воздуха в катетер, слишком выраженным или недостаточным демпфирующим эффектом системы и дрейфом нуля. Вышеперечисленные проблемы должны быть устранены до начала мониторинга.

Центральное венозное давление (ЦВД)

Первоочередные показания к мониторингу ЦВД включают наличие гиповолемии, шока и сердечной недостаточности. Кроме того, доступ к центральной вене необходим для обеспечения надежного пути назначения вазоактивных препаратов, инфузионной терапии, парентерального питания, аспирации воздуха при воздушной эмболии, электрокардиостимуляции, проведения экстракорпоральных процедур и т.д. ЦВД приблизительно соответствует давлению в правом предсердии (50-120 мм вод. ст. или 4-9 мм рт. ст.), которое в значительной мере определяется конечно-диастолическим объемом правого желудочка. У здоровых людей, как правило, работа правого и левого желудочков изменяется параллельно, поэтому ЦВД косвенно отражает и заполнение левого желудочка [Морган Д.Э., Михаил М.С., 1998]. К сожалению, на фоне дисфункции миокарда и повышенной проницаемости сосудов ЦВД далеко не всегда позволяет адекватно предсказать изменения волемического статуса пациента и преднагрузки и серьезно уступает по своему прогностическому значению волюметрическим параметрам гемодинамики [Кузьков В.В. и соавт., 2003].

Изменения ЦВД достаточно неспецифичны. Так, повышение ЦВД наблюдается при правожелудочковой недостаточности, пороках сердца, гиперволемии, тромбоэмболии легочной артерии, легочной гипертензии, тампонаде сердца, увеличении внутригрудного давления (ИВЛ, гемо- и пневмоторакс, ХОБЛ), повышении внутрибрюшного давления (парез ЖКТ, беременность, асцит), повышении сосудистого тонуса (увеличение симпатической стимуляции, вазопрессоры). Снижение ЦВД отмечается при гиповолемии (кровотечение, диспептический синдром, полиурия), системной вазодилатации (септический шок, передозировка вазодилататоров, дисфункция симпатической нервной системы), региональной анестезии и др. Тренды динамики ЦВД более информативны, чем однократное измерение. Определенную информацию можно получить и при оценке формы кривой ЦВД, которая соответствует процессу сердечного сокращения .

Катетеризация легочной артерии и термодилюция

У пациентов с выраженными нарушениями функции сердечно-сосудистой системы целесообразно применять дополнительные объективные методы оценки сердечного выброса (СВ) и тех факторов, которые его определяют: преднагрузки, сократимости миокарда, постнагрузки, ЧСС и состояния клапанного аппарата сердца. В большинстве случаев для этого осуществляют препульмональную (с использованием катетеризации легочной артерии) и транспульмональную (катетеризация бедренной артерии) термодилюцию.

Препульмональная термодилюция основана на установке в малом круге кровообращения специального катетера Сван-Ганца. Эту процедуру осуществляют под контролем показателей давлений в полостях сердца. Следует дифференцировать использование катетера Сван-Ганца в коронарной хирургии и в ОАРИТ некардиологического профиля. При операциях на сердце даже в течение нескольких минут могут происходить значительные изменения параметров гемодинамики, что требует их тщательного контроля. На фоне различных нарушений периферической микроциркуляции могут наблюдаться изолированная или сочетанная систолическая или диастолическая дисфункция левого или правого желудочка. В этих изменениях чрезвычайно трудно разобраться без объективного метода мониторинга состояния системы кровообращения. В связи с этим катетеризация легочной артерии показана в первую очередь пациентам группы высокого риска (эхокардиографическая фракция выброса < 50%) [Бокерия Л.А. и соавт., 2001].

Кроме давления в легочной артерии, катетер Сван-Ганца позволяет проводить прямое постоянное измерение ЦВД и давления заклинивания легочной артерии (ДЗЛА), косвенно отражающего преднагрузку левых отделов сердца. Кроме того, катетер Сван-Ганца может быть использован для измерения (СВ) по методу болюсной термодилюции. При этом введение в правое предсердие определенного количества раствора, температура которого меньше температуры крови больного, изменяет температуру крови, контактирующей с термистором в легочной артерии. Степень изменения обратно пропорциональна СВ. Изменение температуры незначительно при высоком СВ и резко выражено, если СВ низок. Графическое отображение зависимости изменений температуры от времени представляет собой кривую термодилюции. СВ определяют с помощью компьютерной программы, которая интегрирует площадь под кривой термодилюции [Морган Д.Э., Михаил М.С., 1998].

Некоторые современные мониторы (Baxter Vigilance) выполняют автоматическое непрерывное измерение сердечного выброса. В основе их работы лежит метод измерения скорости перехода тепловой энергии от термофиламента, установленного на катетере проксимальнее клапана легочной артерии, к крови и термистору на конце катетера в легочной артерии. Ряд катетеров снабжен оксиметрами, что позволяет осуществлять постоянный мониторинг кислородной сатурации смешанной венозной крови. В некоторых катетерах Сван-Ганца (технология Pulsion VolEF), кроме давлений в малом круге, возможно измерение объемов правого и левого сердца и фракции выброса правого желудочка [Киров М.Ю., 2004]. Наряду с этим, катетеризация легочной артерии позволяет рассчитать индексы, отражающие работу миокарда, транспорт и потребление кислорода. Потенциальные проблемы, связанные с катетеризацией легочной артерии, включают аритмию, узлообразование катетера, инфекционные осложнения и повреждение легочной артерии. Кроме того, при целом ряде состояний отсутствуют убедительные данные о возможности метода улучшить клинический исход .

Методика транспульмональной термодилюции, получившая воплощение в технологии PiCCO, включает введение больному "холодового" индикатора (5%-й раствор глюкозы или 0,9%NaCl температуры от 0 до 10╟С), проникающего сквозь просвет сосудов во внесосудистый сектор. В последние годы эта методика постепенно вытесняет более дорогостоящую термохромодилюцию с использованием специальных красителей. В отличие от катетера Сван-Ганца, дилюция носит транспульмональный характер (раствор проходит через все отделы сердца, легкие и аорту, а не только через правые отделы сердца, как при катетеризации легочной артерии).

Техника транспульмонального разведения индикатора основана на положении, что введенный в центральную вену термоиндикатор пройдет с кровотоком путь от правого предсердия до термодатчика фиброоптического катетера, расположенного в бедренной или лучевой артерии. Это позволяет построить кривую термодилюции и рассчитать СВ [Кузьков В.В., 2003]. Основываясь на анализе формы кривой термодилюции и пульсовой волны рассчитывается целый комплекс параметров гемодинамики, включающий не только показатели давлений, но и объемные характеристики (табл. 2).

Часто применение транспульмональной термодилюции обеспечивает достаточный контроль показателей гемодинамики, что позволяет избежать катетеризации легочной артерии. В целом применение метода показано при шоковых состояниях, оcтром повреждении легких, политравме, ожогах, сердечной недостаточности и отеке легких, в кардиохирургии и трансплантологии. В тех ситуациях, когда прогнозируется легочная гипертензия и нарушение функции правого желудочка, целесообразно сочетание транспульмональной и препульмональной термодилюции [Киров М.Ю., 2004].

В 2004 г. Hoeft предложил использовать следующие основные гемодинамические ориентиры в ходе анестезии и интенсивной терапии у больных, требующих инвазивного мониторинга гемодинамики:

  • АД сред. > 70 мм рт. ст.;
  • сердечный индекс (СИ) > 3 л/мин/м2;
  • ударный индекс (УИ) > 40 мл/м2;
  • волемический статус;
  • глобальный конечно-диастолический объем (ГКДО) > 680 мл/м2;
  • внутригрудной объем крови (ВГОК) > 850 мл/м2;
  • вариации ударного объема (ВУО) < 10%;
  • Внесосудистая вода легких (ВСВЛ) < 7 мл/кг.

Применение этих ориентиров может оказаться решающим в выборе инфузионных сред, инотропной/вазопрессорной поддержки, проведении ИВЛ, назначении диуретиков и почечной заместительной терапии. Доказано, что внедрение в практику ОАРИТ алгоритмов лечения, основанных на показателях гемодинамики, облегчает ведение больных и может улучшить клинический исход .

Неинвазивный мониторинг сердечного выброса

В настоящее время существуют 4 основных методики для неинвазивного определения СВ.

1. Ультразвуковая допплерография за счет измерения линейной скорости кровотока в аорте позволяет определить ударный объем (УО), СВ и постнагрузку. Наиболее распространена чреспищеводная допплерография с помощью технологии Deltex. Метод привлекает неинвазивностью и быстротой в получении параметров, однако его результаты во многом приблизительны и зависят от положения датчика в пищеводе.

2. Измерение СВ с помощью анализа содержания CO2 в конце выдоха (технология NICO) основано на непрямом методе Фика (прямой метод Фика для определения СВ на основе оценки потребления кислорода и его содержания в организме требует наличия катетеров в сердце, артерии и центральной вене, а также стабильных условий метаболизма, поэтому его использование ограничено экспериментальными условиями). Несмотря на свою неинвазивность, метод недостаточно точен и зависит от показателей вентиляции и газообмена.

3. Измерение биоимпеданса грудной клетки с помощью специальных электродов в точке сердечного цикла, соответствующей деполяризации желудочков, также дает возможность оценить УО и СВ. Метод чувствителен к электрической интерференции и в значительной мере зависит от правильности наложения электродов. Его точность сомнительна при целом ряде критических состояний (отек легких, плеврит, объемная перегрузка и др.) [Морган Д.Э., Михаил М.С., 1998].

4. Анализ формы пульсовый волны с помощью технологий PiCCO, LidCO и Edwards Lifesciences на основе инвазивного измерения АД. Ценность метода ограничена при аневризмах аорты, внутриаортальной баллонной контрпульсации и клапанной патологии. В ходе измерений возможна повторная калибровка показателей (3-4 раза в сутки) с помощью транспульмональной термодилюции (методика PiCCO) или введения литиевого индикатора (методика LidCO).

В целом, по точности и эффективности все эти методы уступают транспульмональной термодилюции .

Таблица 2

Нормальные значения гемодинамических показателей, измеряемых с помощью волюметрического мониторинга гемодинамики (при использовании методик PiCCO и VolEF)

Показатель

Метод расчета

Норма

Артериальное давление (АДсред. /MAP) АДсист./АДдиаст.

АДсред. √ по пульсовой кривой. Непосредственное измерение сист. и диаст. АД

70-90 мм рт. ст. 130-90/90-60 мм рт. ст.

Сердечный индекс (СИ/CI)

Интегральный расчет площади под кривой термодилюции

3,0-5,0 л/мин/м2

Центральное венозное давление (ЦВД /CVP)

Непосредственное измерение

2-10 мм рт. ст.

Температура тела

Измерение датчиком термистора

Частота сердечных сокращений (ЧСС/HR)

По пульсовой кривой

60-90 уд/мин

Индекс глобального (всех камер сердца) конечно-диастолического объема (ИГКДО/ GEDVI)

GEDVI = (ITTV √ PTV) / BSA

680-800 мл/м2

Индекс внутригрудного объема крови (ИВГОК/ITBVI)

ITBVI =1,25 х GEDVI

850-1000 мл/м2

Индекс внесосудистой воды легких (ИВСВЛ/EVLWI)

EWLVI = (ITTV √ ITBV) / BW

3,0-7,0 мл/кг

Индекс функции сердца (ИФС/CFI)

CFI = CI / GEDVI

4,5-6,5 мин^-1

Индекс сократимости левого желудочка (ИСЛЖ/dPmx)

Анализ формы пульсовой артериальной волны (максимальная скорость роста систолического сегмента пульсовой кривой): dPmx = d(P) / d(t)

1200-2000 мм рт. ст.

Ударный индекс (УИ/SVI)

Глобальная фракция изгнания (ГФИ/GEF)

GEF = 4 х SV / GEDV

Вариабельность ударного объема (ВУО/SVV)

Вариационный анализ ударного объема SVV = (SVmax √ SVmin) / SVmean

Вариабельность пульсового давления (ВПД/PPV)

Вариационный анализ пульсового давления PPV = (PPmax √ PPmin) / PPmean

Индекс системного сосудистого сопротивления (ИССС/SVRI)

SVRI = 80 x (MAP √ CVP) / CI

1200-2000 дин х сек х см-5/м^2

Индекс проницаемости легочных сосудов (ИПЛС/PVPI)

PVPI = EVLW / PBV

Давление в легочной артерии
(ДЛАср./РAP)
ДЛАсист./ ДЛАдиаст.

Непосредственное измерение с помощью катетера Сван-Ганца

10-20 мм рт. ст.
15-25/8-15 мм рт. ст.

Давление заклинивания легочных капилляров (ДЗЛК/PCWP)

Непосредственное измерение с помощью катетера Сван-Ганца после надувания баллончика на его конце

6-15 мм рт. ст.

Индекс легочного сосудистого сопротивления (ИЛСС/PVRI)

PVRI = 80 x (PAP √ PCWP) / CI

45-225 дин х сек x см-5/м2

Индекс конечно-диастолического объема правого сердца (ИКДОПС/RHEDVI)

RHEDVI = MTtTDpa х CIpa

275-375 мл/м2

Индекс конечно-диастолического объема правого желудочка (ИКДОПЖ/RVEDVI)

RVEDVI = DStTDpa х CIpa

Фракция изгнания правого желудочка (ФИПЖ/RVEF)

RVEF = (SV / RVEDV) х 100

Индекс конечно-диастолического объема левого сердца (ИКДОЛС/LHEDVI)

LHEDVI = (GEDV √ RHEDV) / BSA

275-375 мл/м2

Соотношение КДО правых и левых отделов сердца (R/L)

R / L = RHEDV / LHEDV

Эхокардиография

Трансторакальная и чреспищеводная эхокардиография позволяет оценить анатомию сердца в динамике. С помощью метода можно измерить заполнение левого желудочка (конечно-диастолический и конечно-систолический объем), фракцию изгнания, оценить функцию клапанов, глобальную и местную сократимость миокарда, выявить зоны гипо-, дис- и акинезии. Кроме того, эхокардиография дает возможность обнаружить выпот в полости перикарда и диагностировать тампонаду сердца. Ценность метода зависит от навыков и опыта оператора в получении и интерпретации ультразвуковой картины.

Кроме вышеперечисленных методов мониторинга, косвенную информацию об адекватности перфузии и СВ могут дать градиент между центральной и периферической температурами (в норме не более 1╟С) и диурез (в норме 1 мл/кг/ч).

Таким образом, показатели, получаемые с помощью современного мониторинга гемодинамики, служат ценным ориентиром в ходе анестезии и интенсивной терапии критических состояний. Мониторинг гемодинамики обладает важным прогностическим значением и может улучшить клинический исход.

Литература

1. Бокерия Л.А., Беришвили И.И., Сигаев И.Ю. Анестезия при операциях на работающем сердце. Минимально инвазивная реваскуляризация миокарда. М., 2001, С. 132-144.

2. Киров М.Ю., Кузьков В.В., Суборов Е.В., Ленькин А.И., Недашковский Э.В. Транспульмональная термодилюция и волюметрический мониторинг в отделении анестезиологии, реанимации и интенсивной терапии. Методические рекомендации. Архангельск, 2004. С. 1-24.

3. Крафт Т.М., Аптон П.М. Ключевые вопросы и темы в анестезиологии. М., 1997. С. 140.

4. Кузьков В.В., Киров М.Ю., Недашковский Э.В. Волюметрический мониторинг на основе транспульмональной термодилюции в анестезиологии и интенсивной терапии. Анестезиология и реаниматология 2003, ╧4. С. 67-73.

5. Морган Д.Э., Михаил М.С. Клиническая анестезиология. Книга 1. С-Пб., 1998. С. 99-149.

6. Higgins M.J., Hickey S. Anesthetic and perioperative management in coronary surgery. In: Surgery of Coronary Artery Disease. (Ed. Wheatley D.J.). Arnold, London, 2003, 135-156.

7. Hoeft A. Refresher Course of Lectures, Euroanesthesia. 2004. 75-78.

8. Kirov M.Y., Kuzkov V.V., Bjertnaes L.J. Extravascular lung water in sepsis. In: Yearbook of Intensive Care and Emergency Medicine 2005 (Ed. Vincent J.L.). Springer-Verlag. Berlin-Heidelberg - New York, 2005. 449-461.

9. Malbrain M., De Potter T., Deeren D. Cost-effectiveness of minimally invasive hemodynamic monitoring. In: Yearbook of Intensive Care and Emergency Medicine 2005 (Ed. Vincent J.L.). Springer-Verlag. Berlin-Heidelberg - New York, 2005, 603-631.


Основная цель мониторинга гемодинамики - получить информацию, характеризующую доставку и потребление кислорода в тканях. Мониторинг позволяет создать оптимальные условия для поддержания адекватной органной перфузии, а также как можно раньше выявить и предупредить осложнения агрессивных методов терапии. Современные тенденции развития мониторинга включают снижение его инвазивности, комплексный подход к оценке гемодинамики на базе выделения блоков гемодинамических показателей, дискретно характеризующих преднагрузку, сократительную функцию миокарда, постнагрузку и чувствитель-ность к инфузионной нагрузке, а также выработку алгоритмов «целенаправлен-ной» терапии.
Следует отметить, что гемодинамические параметры составляют практически половину всех компонентов Гарвардского стандарта мониторинга, который служит регламентирующей основой для проведения анестезиологического пособия (табл. 5-1). При проведении интенсивной терапии решение о применении того или иного вида мониторинга кровообращения основано на сбалансированной оценке ряда факторов, включая быстроту получения и ожидаемую ценность данных, сложность представляемых для интерпретации показателей, подготовку персонала, специфический риск мониторинга и т.д. Основные принципы современного мониторинга - точность, надёжность, возможность динамической (непрерывной) оценки основных характеристик кровообращения, комплексность, минимальный риск специфичных осложнений, практичность и дешевизна.
556ИНТЕНСИВНАЯ ТЕРАПИЯ
Таблица 5-1. Гарвардский стандарт мониторинга
Постоянная ЭКГ
АД и пульс (каждые 5 мин)
Вентиляция (минимум один из параметров):
пальпация или наблюдение за дыхательным мешком;
аускультация дыхательных шумов;
капнометрия или капнография;
мониторинг газов крови;
мониторинг выдыхаемого потока газов
Кровообращение (минимум один из параметров): пальпация пульса; аускультация сердечных тонов; кривая АД; пульсоксиметрия
Дыхание (аудиосигнал тревоги для контроля дисконнекции дыхательного контура)
Кислород (аудиосигнал тревоги для контроля нижнего предела концентрации на вдохе)
С определённой долей условности можно выделить инвазивные (требующие катетеризации сосудистого русла) и неинвазивные методы мониторинга кровообращения. Обе группы методов, в свою очередь, могут быть направлены преимущественно на измерение показателей системной и/или лёгочной гемодинамики. Мониторинг может быть перемежающимся (статическим) или постоянным (динамическим). Возможно непосредственное измерение гемодинамических параметров или их опосредованное вычисление путём математической обработки сигнала.
ЭЛЕКТРОКАРДИОГРАФИЯ
ЭКГ - самостоятельный метод диагностики нарушений сердечного ритма и проводимости. Обеспечивая непрерывное измерение частоты и ритма сокращения сердца/желудочков, метод, однако, имеет лишь вспомогательное значение в диагностике ишемии миокарда и эффектов назначаемых препаратов. Для оценки ритма наиболее часто используют II стандартное отведение. Сочетание II отведе-ния с левыми грудными отведениями (отведение У5) повышает чувствительность диагностики ишемических изменений сегмента 5Т до 96%. Многие современные мониторы автоматически измеряют динамику сегмента 5Т и выводят тренды, характеризующие выраженность ЭКГ-признаков ишемии. Инвазивный (внутри- сердечный) мониторинг ЭКГ можно использовать, чтобы подтверждать правиль-ность положения центральных венозных катетеров (ЦВК), проводить кардиости-муляцию и ангиохирургические вмешательства, направленные на лечение стойких нарушений сердечного ритма.
НАСЫЩЕНИЕ (САТУРАЦИЯ) ГЕМОГЛОБИНА КИСЛОРОДОМ
Измерение насыщения (сатурация, 502 или ЗаЮ2) крови кислородом основано на том, что оценивается степень поглощения проходящего или отражённого света определённой длины волны. Сатурация артериальной крови ($02), как правило, измеряется неинвазивным путём (пульсоксиметрия) и в большей степени характеризует вклад внешнего дыхания в доставку кислорода (002). Инвазивное измерение За02 возможно при заборе образца артериальной крови или путём установки артериального фиброоптического катетера (артериальная оксиметрия). В основе пульсоксиметрии лежат принципы оксиметрии и плетизмографии. За счёт различной способности оксигемоглобина и дезоксигемоглобина абсорбировать лучи красного и инфракрасного спектра пульсоксиметрия изолированно оценивает поглощение света пульсирующим (артериальным) компонентом кро-вотока. Пульсоксиметры позволяют осуществлять постоянное измерение ЧСС и демонстрируют на дисплее плетизмограмму, отражающую наполнение капилляров и состояние микроциркуляторного русла. Информативность пульс-оксиметрии значительно снижается при расстройствах периферической циркуляции (шок) и неконтролируемых движениях пациента. Уменьшение сатурации не следует однозначно рассматривать как признак нарушения оксигенации: для уточнения диагноза необходимо выполнить анализ газового состава артериальной крови.
Измерение сатурации кислородом смешанной (в лёгочной артерии, Зу02) и центральной (как правило, в бассейне верхней полой вены, Зсу02) венозной крови позволяет оценить баланс между доставкой и потреблением 02. Для измерения сатурации смешанной венозной крови необходимо установить катетер в лёгочную артерию или верхнюю полую вену. При комплексной интерпретации результатов венозной оксиметрии вместе с прочими гемодинамическими параметрами дифференцированное и направленное применение методов терапии, включающих инотропную/вазопрессорную поддержку, инфузионную терапию и/или повышение уровня гемоглобина, может улучшить исход заболевания. Нормальное значение сатурации артериальной крови составляет 95-100%, значение венозной - 65-80%.
Неинвазивная оксиметрия головного мозга даёт возможность определить регионарное насыщение гемоглобина кислородом в мозге (г302, в норме приблизительно 70%). Доказано, что при остановке кровообращения, эмболии сосудов головного мозга, гипоксии и гипотермии происходит выраженное снижение г302. Определение Зу02 крови, полученной при пункции верхней луковицы яремной вены, позволяет оценить потребление кислорода головным мозгом.
СТАТИЧЕСКОЕ ГЕМОДИНАМИЧЕСКОЕ ДАВЛЕНИЕ Измерение системного артериального давитмш
Выбор методики и частоты измерения АД определяется состоянием больного и тяжестью хирургического вмешательства. При стабильной гемодинамике, как правило, достаточно неинвазивного измерения АД, предпочтительно аппаратным способом. Неинвазивное измерение АД основано на аускультативном (тоны Короткова) и осциллометрическом (колебания давления в манжете) методах. Инвазивное измерение АД рекомендуют в следующих случаях:
быстрое изменение клинической ситуации у пациентов ОРИТ (шок, острое повреждение лёгких, СЛР и прочие критические состояния);
® применение вазоактивных препаратов (инотропы, вазопрессоры, вазодилата- торы, анестетики, антиаритмики и др.);
высокотравматичные хирургические вмешательства (кардиохирургия, нейрохирургия, торакальная хирургия и др.);
необходимость в частом заборе артериальной крови (определение газового состава и другие лабораторные исследования).
Инвазивный мониторинг АД осуществляют с помощью катетеризации магистральной артерии: чаще лучевой или бедренной, реже плечевой, подмышечной или артерии тыла стопы (рис. 5-10).
Основная цель лечебных мероприятий на основе мониторинга АД - под-держать среднее АД, отражающее перфузионное давление в различных органах. В соответствии с последними рекомендациями, среднее АД при шоковых состоя-ниях должно поддерживаться на уровне выше 65 мм рт.ст., за исключением слу-чаев травматического кровотечения (40 мм рт.ст. до тех пор, пока не выполнен хирургический гемостаз) и черепно-мозговой травмы (90 мм рт.ст.).
Кроме статического анализа давлений при инвазивном мониторинге АД возможен также опосредованный анализ сократимости миокарда, основанный на построении касательной к отрезку артериальной кривой при максимальной скорости роста давления - ёР/сК или АРтах (см. рис. 5-10).
СЛ
сл
00
Все системы прямого измерения АД создают артефакты, которые обусловлены неадекватными соединениями в системе или положением катетера, избыточным или недостаточным демпфирующим эффектом системы, попаданием в неё пузырьков воздуха, дрейфом нуля и прочими факторами (см. рис. 5-10).
Центральное венозное давление/давление в правое предсердии
ЦВД - «суррогатный» маркёр преднагрузки на правый желудочек. Ключевые показания к мониторингу ЦВД - острая сердечная недостаточность и шок. Катетеризацию верхней полой вены проводят практически всем пациентам ОРИТ. Нормальные значения ЦВД составляют 4-9 мм рт.ст. (5-12 см вод.ст.), что приблизительно соответствует давлению в правом предсердии (ДПП) и лишь приблизительно отражает КДО правого желудочка (преднагрузка) и преднагрузку на правые отделы сердца. У здоровых людей, как правило, работа правого и левого желудочков изменяется параллельно, поэтому ЦВД также косвенно отражает заполнение левого желудочка.
ЦВД и ДПП определяются тонусом венозного русла, ОЦК, внутриплевраль- ным давлением, комплайнсом правых отделов сердца, давлением в лёгочной артерии, функцией трикуспидального клапана и др. Существует ряд физиологических и патологических факторов, повышающих ЦВД вне прямой связи с ростом преднагрузки на сердце. Определённую информацию можно получить и при оценке формы кривой ЦВД, соответствующей процессу сердечного сокращения (рис. 5-11). В условиях шока и острого повреждения лёгких ЦВД и ДПП не коррелируют с внутригрудным объёмом крови и степенью ОЛ.
Согласительная конференция, посвящённая гемодинамическому мониторингу при шоке (Париж, 2006), не рекомендует оценивать ответ на инфузионную нагрузку на основании только лишь маркёров преднагрузки (ЦВД/ДПП) и ДЗЛК, тем не менее при шоке и низких значениях статических маркёров преднагрузки (ЦВД/ ДПП Давление в лёгочной артерии и давление заклинивания лёгочной артерии
Измерение ДЛА и ДЗЛК обычно осуществляют инвазивно, устанавливая баллонный флотационный катетер Сван-Ганца в лёгочную артерию (рис. 5-12).
Можно проводить неинвазивное опосредованное определение ДЛА, измеряя скорость кровотока в лёгочной артерии с помощью допплерографии. Катетер Сван-Ганца устанавливают через магистральный (чаще яремная или подключичная вена) или периферический венозный доступ с использованием специального венозного интродьюсера. Находящийся на кончике катетера баллончик раздувают воздухом или С02, и он, следуя направлению кровотока, увлекает за собой катетер, который устанавливают в лёгочную артерию под контролем давления в различных отделах малого круга кровообращения (см. рис. 5-12).
Катетеризация лёгочной артерии открывает путь к регистрации ряда важных гемодинамических параметров: ЦВД, ДПП, систолического, диастолического и среднего ДЛА, ДЗЛА, О ДЛА, ДЗЛК, Зу02, а также (во многих моделях катетера Сван-Ганца) - СВ (табл. 5-2).
При определённой модификации (подогреваемый элемент и фиброоптический источник/проводник света и др.) СВ и Зу02 можно регистрировать непрерывно. Раздутие баллона на кончике катетера ведёт к «заклиниванию» лёгочной артерии, при этом результирующее давление, регистрируемое дистальнее баллона, отражает конечно-дистолическое давление в лёгочных венах, которое лишь приблизительно характеризует давление в левом предсердии и преднагрузку на левый желудочек.

Повышение ЦВД/ДПП
Правожелудочковая
недостаточность
Пороки сердца
Г иперволемия
Тромбоэмболия легочной артерии
Легочная гипертензия
Тампонада сердца
Увеличение внутри грудного давления при ИВЛ (ПДКВ), гемо- и пневмотораксе, ХОБЛ
Повышение внутри брюшного давления при парезе ЖКТ, беременности, асците
Повышение сосудистого тонуса при симпатической стимуляции, введении вазопрессорных или инотропных препаратов

Таблица 5-2. Основные гемодинамические показатели и расчётные величины Показатель Расчёт/комментарии Нормальные значения Статическое давление АД Систолическое АД (АДмит) 90-140 мм рт.ст. Диастолическое АД (АДшмгт) 60-90 мм рт.ст. Среднее АД (АДгп) (АД, + 2ХАД_т)/3 70-105 мм рт.ст. ЦВД - 4-9 мм рт.ст. Давление в лёгочной артерии (ДЛА) Систолическое ДЛА (ДЛАигт) 15-25 мм рт.ст. Диастолическое ДЛА (ДЛАпияг7) 8-15 мм рт.ст. Среднее ДЛА (ДЛАг,) (ДЛА_ + 2 х ДЛА ]иагт)/3 10-20 мм рт.ст. Давление заклинивания легочных капилляров - 6-12 мм рт.ст.
Динамические параметры (чувствительность к инфузионной нагрузке) Вариабельность систолического давления АД максимальное-АД мини-
""СИС1 ^СИСТ...1.МКП МИН.7" Г Сердечный выброс и производные показатели Сердечный выброс (СВ) ЧСС х УО/ЮОО 4,0-8,0 л/мин Сердечный индекс (СИ) СВ/3 тела 2,5-4,0 л/(минхм2) Ударный объем (УО) СВ/ЧССх 1000 60-100 мл Ударный индекс (УИ) СИ/ЧСС х 1000 35-60 мл/м2 ОПСС 79,9 х (АДгп - ДПП)/СВ 80-1200 динхс/см5 Индекс ОПСС 79,9х(АДгп - ДПП)/СИ 80-1200 динхс/(см5хм2) Легочное сосудистое сопротивление 79,9 х (ДЛА п - ДЗЛК)/СВ Волюметрические показатели Индекс глобального конечнодиастолического объёма (ИГКДО) ИВГТО - ИЛОК = (СИ х МТ1) - (СИ х 031) 680-800 мл/м2 Индекс внутригрудного объема крови 1,25 х ИГКДО 800-1000 мл/м2 (ИВГОК) Индекс внесосудистой воды лёгких (ВГТО - ВГОК)/М тела 3-7 мл/кг (ИВСВЛ) Примечания. 5 тела - площадь тела, М тела - масса тела, ЧСС - частота сердечных сокращений, ИВГТО - индекс внутригрудного термального объёма (СИ х МТ1), ИЛОК - индекс лёгочного объёма крови.
Следует помнить, что истинный маркёр преднагрузки - КДО левого предсердия, связь которого с давлением варьирует в зависимости от ряда условий. Как и при регистрации ЦВД, здесь действует правило «давление - это ещё не объём». Кроме того, ОДЛА адекватно отражает конечно-диастолическое давление в левом предсердии лишь тогда, когда катетер находится в сосудах третьей перфузионной зоны Веста (рис. 5-13). Следует различать давление заклинивания лёгочной артерии
(ДЗЛА), окклюзионное давление лёгочной артерии (ОДЛА) и давление заклинивания лёгочных капилляров (ДЗЛК). О ДЛА измеряют при раздутом баллоне, оно соответствует давлению в левом предсердии. ДЗЛА измеряют при окклюзии лёгочной артерии катетером Сван-Ганца с нераздутым баллоном. ДЗЛА в большей степени характеризует давление в лёгочных венах. ДЗЛК рассчитывают математически на основании ОДЛА и ДЗЛА. Оно соответствует давлению в лёгочных капиллярах.
В последние годы катетер Сван-Ганца утратил прежнюю популярность, поскольку ряд исследований продемонстрировал, что его использование не только не оказывает положительного влияния на клинический исход, но даже может увеличивать частоту осложнений и повышать летальность. Выяснилось, что применение катетера Сван-Ганца у пациентов с застойной сердечной недостаточностью при крайне рискованных вмешательствах и остром повреждении лёгких не даёт ощутимых преимуществ.
На сегодняшний день катетеризация лёгочной артерии уже не используется в качестве основного метода измерения СВ, и её всё активнее вытесняют менее инвазивные исследования, в частности транспульмональная термодилюция. Нельзя рекомендовать изолированное измерение ОДЛА для прогнозирования ответа на инфузионную нагрузку при шоке.
Установку катетера Сван-Ганца сопровождает рост частоты аритмий, тромбоэмболических, а иногда и инфекционных осложнений. Наиболее опасные осложнения - узлообразование катетера, сепсис, полная блокада и перфорация сердца, разрыв лёгочной артерии. Использование катетера Сван-Ганца абсолютно противопоказано при полной блокаде правой ножки пучка Гиса (может развиться полная блокада сердца), а также при непереносимости латекса, если последний входит в состав баллона.
Несмотря на то что в современных обзорах катетеризацию лёгочной артерии нередко характеризуют как «высокоинвазивный» метод мониторинга, он сохраняет своё значение при кардиохирургических вмешательствах, у пациентов ОРИТ с выраженной лёгочной гипертензией и, несомненно, в современных научных исследованиях.
СЕРДЕЧНЫЙ ВЫБРОС
СВ - результирующая величина, определяемая пред-, постнагрузкой, миокардиальной сократимостью, ЧСС и функцией клапанного аппарата сердца. Ряд показателей, лишь относительно характеризующих преднагрузку (ЦВД, ОДЛА), частично утрачивает своё значение при непосредственном и особенно при непрерывном измерении СВ. Наряду с концентрацией гемоглобина и 5а02 СВ - один из основных показателей, определяющих доставку кислорода к органам. В то время как первые две переменные относительно стабильны и легко могут быть скорри- гированы, измерение СВ может давать значимые преимущества в поддержании системной доставки кислорода. В наши дни для измерения СВ доступен широкий спектр инвазивных и неинвазивных методов (рис. 5-14).
Инвазивные методы (дискретное и непрерывное измерение)
Препульмональная термодилюция подразумевает использование термистор- ного катетера Сван-Ганца. Для расчёта СВ используют метод Стюарта-Гамильтона, основанный на определении площади термодилюционной кривой (рис. 5-15).

Методы измерения сердечного выброса

Рис. 5-14. Методы измерения сердечного выброса. СВ - сердечный выброс.

Болюсное введение в правое предсердие раствора, охлаждённого (При одновременном использовании препульмональной и транспульмональной термодилюции кроме статических давлений возможно измерение объёма правого и левого отдела сердца, а также ФВ правого желудочка. Наряду с этим катетеризация лёгочной артерии позволяет рассчитать индексы, отражающие работу правого и левого желудочка, а также содержание, транспорт и потребление кислорода.
Траеспульмоеальеая дилюция индикатора также основана на методе Стюарта-Гамильтона, но с определением температуры крови (концентрации индикатора) в магистральной системной артерии. Индикатор проходит через все отделы сердца, лёгочное сосудистое русло и аорту, а не только через правые отделы сердца, как при катетеризации лёгочной артерии. Преимущество этой методики перед препульмональной термодилюцией состоит в измерении ряда дополнительных объёмных (волемических) параметров на основании углублённого анализа дилюционной кривой. В последние годы изолированная транспульмональная тер- модилюция практически заместила метод транспульмональной термохромодилю- ции, основанный на одновременном введении индикатора-красителя, и активно конкурирует с препульмональной термодилюцией.
Непрерывное измерение СВ («с каждым ударом сердца», «ЪеаМо-Ьеа1») основано на анализе изменений формы и площади пульсовой волны, комплайнса артериального русла/аорты, ЧСС, АД и других факторов (рис. 5-16). Метод реализован в ряде современных технологий.
® Технология Р1ССО (Р1ССОр1ш). Повторная калибровка путём транспульмональной термодилюции необходима каждые 4-6 ч. Катетер устанавливают в магистральную (например, в бедренную) артерию.
Технология Ри1$еСО (1ЛЙСО). Калибровка путём транспульмональной термодилюции хлорида лития (ЫС1) необходима каждые 8 ч. Катетер можно устанавливать в периферическую (лучевую) артерию.
Технология ССО (У1%Иапсе 1-11). Используется специальный КСГ с нагре-ваемым элементом (филамент). Также возможно непрерывное измерение КДО сердца и Зу02.

Вариабельность систолического давления (ВСД / ЗР\/) = АДСИСТ макс - АД0ИСТ мин (за 1 дыхательный цикл) Вариабельность пульсового давления (ВПД / РРУ) = (АДпульс макс + АДпульс мин) / АДпульс сред Вариабельность ударного объёма (ВУО / 3\А/) = (УОмакс + У0МИН) / УОсред
Непрерывный расчет сердечного выброса (принцип Кети-Шмидта)

Технология РКАМ (ргеззиге гесогйгщ апа1уЫса1 теХкос!). Предварительной калибровки не требуется.
Технология СОШАУЕР1о\уТгаск™ (Уг#г7ео). Предварительной калибровки не требуется. Возможно значимое занижение СВ по сравнению с эталонным измерением при помощи препульмональной термодилюции.
Ультразвуковая допплерография за счёт измерения линейной скорости кровотока в аорте позволяет определить УО, СВ и постнагрузку. Наиболее распространена чреспищеводная допплерография с помощью технологии ОеНех. Метод характеризуется неинвазивностью и быстротой в получении параметров, однако его результаты во многом приблизительны и зависят от положения датчика в пищеводе.
Неинеазивные методы измерения сердечного выброса
По точности и эффективности все неинвазивные методы уступают термодилю- ционным. В настоящее время существует два основных метода для непрерывного и дискретного неинвазивного определения СВ.
Модифицированный анализ содержания С02 в конце выдоха (N100, «рагНаI С02 геЪгеаШ炙) - неинвазивная модификация метода Фика. Метод недостаточно точен и зависит от показателей вентиляции и газообмена.
Импедансная кардиография (1СС, Вю2, ЫАЗА, США) грудной клетки с помощью специальных электродов в точке сердечного цикла, соответствующей деполяризации желудочков, также даёт возможность оценить СВ, УО и общее периферическое сопротивление. Метод чувствителен к электрической интерференции и правильности наложения электродов. Точность биоимпе- дансометрии сомнительна в критических состояниях (ОЛ, шок, объёмная перегрузка и др.).
Косвенно об адекватности измеренного СВ потребностям тканей в 02 можно судить по градиенту между центральной и периферической температурой (в норме 1 мл/(кгхч)], концентрации лактата, данным желудочной тонометрии, сублингвальной капнографии, ортогональной поляризационной спектральной визуализации кровотока, а также по Зх02 или Зсу02. Однако, за исключением определения лактата, вопрос о необходимости рутинного использо-вания этих методов при шоковых состояниях остаётся открытым.
ДИНАМИЧЕСКИЙ МОНИТОРИНГ И ОЦЕНКА ОТВЕТА НА ИНФУЗИОННУЮ ТЕРАПИЮ
Методы так называемого динамического мониторинга используются для оценки волемического статуса пациента, в частности для выявления гиповолемии, прогнозирования эффекта инфузионной терапии на преднагрузку и СВ фиШ гезропФепезз), а также для контроля за проводимой терапией. В рамках динамического мониторинга описаны разнообразные тесты, позволяющие оценить ряд параметров (см. рис. 5-16, см. табл. 5-2).
Вариабельность систолического давления - разность между максимальным (достигается сразу после начала аппаратного вдоха) и минимальным (к окон-чанию вдоха) систолическим АД в течение одной респираторной фазы.
Вариабельность пульсового давления - изменения пульсового давления (в %), средняя разность между наивысшим и наименьшим его значением за последние 30 с.
Вариабельность ударного объёма - изменения УО (в %), среднее значение разности между наивысшим и наименьшим его показателем за последние 30 с.
К прочим показателям относят также пульс-оксиметрию с оценкой формы плетизмографической волны, изменение диаметра полых вен, динамику скорости аортального кровотока и длительность периода, предшествующего изгнанию.
Применяют такие пробы, как респираторный тест на вариабельность систолического давления (КЗУТ-тест) и тест с подниманием ног. Вышеперечисленные показатели и тесты информативны только в тех случаях, когда сохраняется синусовый ритм и полностью отсутствуют попытки спонтанного дыхания (ИВЛ).
Динамические изменения ЦВД также более информативны, чем статические повторные измерения, как и при измерении АД, существуют тесты, позволяющие по вариабельности ЦВД прогнозировать реакцию СВ на инфузионную нагрузку и потребность в ней. Описана динамическая реакция ЦВД на спонтанный вдох пациента или на принудительное создание положительного давления в дыхательных путях.
ВОЛЮМЕТРИЧЕСКИЙ (ОБЪЁМНЫЙ) МОНИТОРИНГ Инвазивные методы
В настоящее время инвазивный волюметрический мониторинг основан на рассмотренных выше методах препульмональной и транспульмональной термо- дилюции. Следует отметить, что последний подход завоёвывает всё большую популярность, что связано с работами, говорящими о нецелесообразности рутинного применения катетера Сван-Ганца. Основные волюметрические параметры - производные величины, расчёт которых основан на анализе кривой разведения индикатора. Один из наиболее точных методов волюметрического мониторинга - термохромодилюция (метод «парного индикатора»), основанный на дилюции диффундирующего (выходящего за пределы сосудистого русла - охлаждённый раствор) и недиффундирующего (не покидающего сосудистого русла - раствор красителя) индикаторов. Хотя этот метод стал основой для разработки упрощённой изолированной транспульмональной термодилюции, его применение в настоящее время крайне ограничено. Углублённый анализ термодилюционной кривой основан на расчёте среднего времени прохождения индикатора (МТ1;) и времени нисходящей части кривой (Б51:). Одновременный расчёт СВ, МТг и В51; позволяет определить волюметрические показатели (рис. 5-17).
Наиболее важные волюметрические показатели (см. табл. 5-2) - глобальная фракция изгнания (ГФИ, СЕР), глобальный конечно-диастолический объём (ГКДО, СЕБУ), внутригрудной объём крови (ВГОК, ГГВУ) и внесосудистая вода лёгких (ВСВЛ, ЕУЬШ). В настоящее время ГКДО и ВГОК считают наиболее точ-
1п с(1) е 1 У У * А* 051: МТ1
А*, время появления дилюционной кривой (Арреагапсе йте]
МП, среднее время прохождения кривой (Меап ТгапзИ: йте)
034, время экспоненциально убывающей части кривой (0о\д/п-81оре Ите)
Термохромодилюция ОсНОВНЫв ВОЛЮМвТрИЧеСКИв Изолированная ГОШ) показатели термодилюция (ИТД)
ВГТО = СВ х МТ1 КДОЛП КДОПЖКДОЛП кдолж ВГТО = СВ хМТ1
ными и воспроизводимыми из доступных маркёров преднагрузки. Основанная на ГКДО оптимизация терапии кардиохирургических пациентов сопровождается уменьшением потребности в вазопрессорной и инотропной терапии, меньшей продолжительностью ИВЛ и сокращением сроков пребывания в ОРИТ.
Измерение внесосудистой воды лёгких
Количественная оценка содержания жидкости в лёгких признана клинически важным методом мониторинга. Показатель ВСВЛ отражает проницаемость лёгочного сосудистого русла, что косвенно характеризует глобальную прони-цаемость эндотелия на фоне «синдрома капиллярной утечки». Одновременная оценка жидкостного баланса лёгких и преднагрузки на сердце служит основой для сбалансированного проведения инфузионной и респираторной терапии, а также для назначения препаратов катехоламинового ряда или диуретиков паци-ентам ОРИТ.
В наши дни для измерения ВСВЛ наиболее широко используют метод транспульмональной термодилюции (см. рис. 5-17). В сравнении с катетером Сван- Ганца, динамическое измерение ВСВЛ с надлежащей коррекцией терапии позволяет сократить продолжительность респираторной поддержки, время пребывания пациента в ОРИТ и, возможно, улучшает исход заболевания. В ряде исследований показано, что значения ВСВЛ (в отличие от ЦВД и ДЗЛК) коррелируют с составляющими шкалы повреждения лёгких: комплайнсом, индексом оксигенации и степенью рентгенологических изменений, а также обладают чётким прогностическим значением.
Неинвазивные методы
Неинвазивные методы определения волюметрических гемодинамических показателей включают эхокардиографию и томографическую плетизмографию.
Трансторакальная и чреспищеводная эхокардиография позволяет оценить анатомию сердца в динамике. С помощью метода можно измерить заполнение левого желудочка (конечно-диастолический и конечно-систолический объём), фракцию изгнания, оценить функцию клапанов, глобальную и местную сократимость миокарда, выявить зоны гипо-, дис- и акинезии. Кроме того, эхокардиография даёт возможность обнаружить выпот в полости перикарда и диагностировать тампонаду сердца. Ценность метода зависит от навыков и опыта оператора в получении и интерпретации ультразвуковой картины.
Ряд неинвазивных методов: метод смешанных инертных газов (МЮЕТ), УЗИ, КТ и МРТ - позволяет количественно или полуколичественно оценить степень ОЛ. Последние два метода (без контрастирования) не позволяют дифференцировать ВСВЛ, кровь лёгочных сосудов и элементы лёгочной паренхимы. Ультразвуковая оценка («феномен хвоста кометы») ограничена случаями кардиогенного ОЛ и не может быть использована при остром повреждении лёгких в связи со схожей акустической картиной фиброзных изменений.
ЗАКЛЮЧЕНИЕ
Показатели, получаемые с помощью современного мониторинга гемодинамики, служат ценным ориентиром в ходе анестезии и интенсивной терапии критических состояний. Мониторинг гемодинамики обладает важным прогностическим значением, может улучшить клинический исход и уменьшить частоту осложнений при использовании современных диагностических и лечебных методов. Несмотря на непрерывное развитие и совершенствование, пока не существует универсального метода мониторинга кровообращения, улучшающего исход заболевания и снижающего летальность реанимационных больных. Для того чтобы оценить новые методы мониторинга гемодинамики, требуются широкомасштабные клинические исследования.
СПИСОК ЛИТЕРАТУРЫ
Бунятян А.А., Рябов Г.А., Маневич А.З. Анестезиология и реаниматология. - М.: Медицина, 1984.
Интенсивная терапия / Под общ. ред. П. Марино. - М.: ГЭОТАР-Мед, 1998.
Ап1:опеШ М., Ьеуу М., Апс1ге\У5 Р.]. е! а1. Нетойупагтс топйопп^ т $Ьоск апс! трНса- Иоп8 1ог тапа§етеп1;: 1п1:егпа1:юпа1 Сопзепзш СопГегепсе. Раш, Ргапсе, 2006, Арп1 27 -28 // Шегшуе Саге Мес1. - 2007, РеЬ.
Вегпагс! С.К., Зорко С., Сегга Р. е{ а1. Ри1топагу аПегу саГЬе^епгаИоп апс! сНтса1 оиГсоте$: 1;Ье ЫаИопа1 НеаП, Ьип§, апс! В1оос1 1п${лШ{;е апс! Еоос! апс! Втщ АсЬшшзГгаИоп ШогкзЬор героП: сопзепзиз зШетеп! //]АМА. - 2000. - Уо1. 283 - Р. 2568-2572.
СоерГеП М.5.С., Кеи1ег Б.А., Акуо1 В.е1 а1. Соа1-сНгес{;ес1 Яшс1 тапа§етеп1; гейисез уа$орге$- зог апс! са!;есЬо1атте и$е т сагсИас $иг§егу ра^етз // 1п1;еп51уе Саге Мес!. - 2007. - Уо1. 33. - Р. 96-103.
Клгоу М.У., Кигкоу УУ., Е^егШаез I,.].Ех1;гауа$си1аг 1ип§ \уа!ег т 8ер815 // УеагЬоок о!" Мегшуе Саге апс! Етег^епсу МесНсте, 2005 / Ес!. ].Ь. Утсеп!. - ВегНп; НеЫеШег^; Ы.У.: 5рпп§ег-Уег1а§, 2005. - Р. 449-461.
Ма1Ьгат М., Бе Роиег Т., Эеегеп Э. Соз^-е^есИуепезз оГ гшттаПу туа$1уе Ьето^упапж тот!;опп§ // УеагЬоок оГ Мегшуе Саге апс! Етег^епсу МесНсте, 2005 / Ес!. Утсеп!: - ВегНп; Не1с1е1Ьег§; Ы.У.: 5рпп§ег-Уег1а§, 2005. - Р. 603-631.
Магк].В., 51аи§Ь1;ег Т.Р. СагсНоуа$си1аг шопИопп^ // Апез{;Ье$1а. - 6гЬ ес] / Ес!. К.Э. МШег - Е1$еУ1ег СЬигсЬШ иут§5{;опе, 2005. - Р. 1265-1362.
Ошск СиМе 10 СагсНори1топагу Саге / Ес!. Р.К. 1лсЬ|;еп1:Ьа1 - Ес!\уагс15 Шезаепсез, 2002. - Р. 1-112.
Шуегз Е., Ы^иуеп В., Нау51ас! 5. е! а1. Еаг1у Соа1-01гес1;ес! ТЬегару СоНаЬогаИуе Сгоир: Еаг1у еоа1-сНгес1;ес1 гЬегару т 1;Ье Ггеа1;теп1 о!" зеуеге 5ер$1$ апс! $ер!лс $Ьоск // N. Егш1. Т. Мес!. - 2001. - Уо1. 345 - Р. 1368-1377.
Ко^егз Р. 1пуа51уе Ьето^упагшс тотШпп^ // АррПес! СагсНоуа$си1аг РЬу$ю1о§у / Ес!. М.К. Ртзку - ВегНп; Не1с1е1Ьег§; Ы.У.: 5рпп§ег-Уег1а§, 1997. - Р. 113-128.
ТЬе Е5САРЕ 1пуе$и§а1;ог$ апс! Е5САРЕ 5Шс1у СоогсНпаШгз. Еуа1иа1;юп §Шс!у оГ соп§е$1пуе ЬеаП ГаНиге апс! ри1топагу аПегу сагЬеГепгаиоп е^ес^уепезз: 1:Ье Е5САРЕ 1па1 // ]АМА - 2005. - Уо1. 294. - Р. 1625-1633.
ТЬе 1п1:еп51Уе Саге ШИ Мапиа1 / Ес!. Р.Ы. Ьапкеп. - Ш.В. Заипйегз, 2001.
МЬее1ег А.Р., Вегпагс! С.К., ТЬотрзоп В.Т. е* а1. Ри1шопагу-аг1;егу уегзиз сепГга1 уепош сагЬе!;ег 1о §шс1е 1хеа{;теп1 оГ аси1;е 1ип§ т;щгу // N. Еп§1. ]. Мес!. - 2006. - Уо1. 25, N 354 - Р. 2213-2224.



2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.