Шум вибрация меры защиты от. Производственный шум и вибрация. Защита от их воздействия. Влияние вибрации на организм человека

Введение

производственный шум вибрация

Магистерская диссертация является заключительным этапом обучения студентов по основной образовательной программе высшего профессионального образования, реализуемая вузом по направлению подготовки 022000.68 - «Экология и природопользование» магистерской программы «Глобальные экологические проблемы». Магистерская диссертация представляет собой законченную теоретическую и экспериментальную научно-исследовательскую работу, содержащую всесторонний критический анализ научных источников по теме исследования, выполненную самостоятельно с решением задач актуальной научно-технической проблемы, определяемой спецификой направления подготовки и выбранной магистерской программой направления подготовки с разработкой новых подходов, использованием разнообразных методов и направленная на решение вопроса устойчивого развития .

Человек с самого рождения окружен шумом и вибрациями и в течение всей своей жизни находится под их воздействием. Едет ли он в трамвае, автобусе, метро или на лошади, при движении он ощущает не только шум, но и вибрации; находится ли он в помещении или на открытом воздухе, он слышит шумы, звуки (разговор, музыку и прочее).

Наш век стал самым шумным. Трудно сейчас назвать область техники, производства и быта, где в звуковом спектре не присутствовал бы шум, то есть мешающая нам и раздражающая нас смесь звуков.

Антропогенный шум способствует увеличению уровня шума сверх природного фона и действует отрицательно на живые организмы, поэтому шум и вибрация являются объектами загрязнения окружающей среды.

Проблема борьбы с шумом во всех ее проявлениях была и остается актуальной.

В результате длительного воздействия шума нарушается нормальная деятельность сердечно - сосудистой и нервной системы, пищеварительных и кроветворных органов, развивается профессиональная тугоухость, прогрессирование которой может привести к полной потере слуха.

Повышенный уровень шума и вибрации остаётся одной из наиболее острых проблем для городских территорий. Основными источниками шумового и вибрационного воздействия на территории города являются автотранспорт, строительная техника, промышленные предприятия и площадки, инженерное оборудование зданий (в том числе вентиляционные системы), шумы бытового происхождения на территориях внутри кварталов жилых домов .

Целью данной работы является оценка уровней шума и вибрации от автотранспорта на территории города Вологда.

Исходя из цели, были поставлены задачи:

Провести замеры уровней шума и вибрации на улицах города Вологды с различной степенью загруженности автотранспортом.

Сравнить полученные значения с нормативными.

Выявить зависимости уровней шумовой и вибрационной нагрузки на различных по загруженности автотранспортом улицах города Вологды от интенсивности автотранспортных потоков и от близости к другим загруженным автотранспортом улицам.

Оценить эффективность имеющихся в городе мероприятий по защите от шума и вибрации.


1. Нормирование величин шума и вибрации на территории городской застройки

1.1 Концепция устойчивого развития

Устойчивое развитие - это такое развитие, которое удовлетворяет потребности настоящего времени, но не ставит под угрозу способность будущих поколений удовлетворять свои собственные потребности . Оно включает два ключевых понятия:

понятие потребностей, в частности потребностей, необходимых для существования беднейших слоев населения, которые должны быть предметом первостепенного приоритета;

понятие ограничений, обусловленных состоянием технологии и организацией общества, накладываемых на способность окружающей среды удовлетворять нынешние и будущие потребности .

Концепция устойчивого развития появилась в результате объединения трех основных точек зрения: экономической, социальной и экологической.

С экологической точки зрения, устойчивое развитие должно обеспечивать целостность биологических и физических природных систем. Особое значение имеет жизнеспособность экосистем, от которых зависит глобальная стабильность всей биосферы. Более того, понятие «природных» систем и ареалов обитания можно понимать широко, включая в них созданную человеком среду, такую как, например, города. Основное внимание уделяется сохранению способностей к самовосстановлению и динамической адаптации таких систем к изменениям, а не сохранение их в некотором «идеальном» статическом состоянии. Деградация природных ресурсов, загрязнение окружающей среды и утрата биологического разнообразия сокращают способность экологических систем к самовосстановлению .

Концепция устойчивого развития основывается на пяти основных принципах:

Человечество действительно способно придать развитию устойчивый и долговременный характер, с тем, чтобы оно отвечало потребностям ныне живущих людей, не лишая при этом будущие поколения возможности удовлетворять свои потребности.

Имеющиеся ограничения в области эксплуатации природных ресурсов относительны. Они связаны с современным уровнем техники и социальной организации, а также со способностью биосферы справляться с последствиями человеческой деятельности.

Необходимо удовлетворить элементарные потребности всех людей и всем предоставить возможность реализовывать свои надежды на более благополучную жизнь. Без этого устойчивое и долговременное развитие попросту невозможно. Одна из главнейших причин возникновения экологических и иных катастроф - нищета, которая стала в мире обычным явлением.

Необходимо согласовать образ жизни тех, кто располагает большими средствами (денежными и материальными), с экологическими возможностями планеты, в частности относительно потребления энергии.

Размеры и темпы роста населения должны быть согласованы с производительным потенциалом глобальной экосистемы Земли .

Индикаторы устойчивого развития должны отражать экономические, социальные и экологические аспекты удовлетворения потребностей современного поколения без ограничения потребностей будущих поколений по удовлетворению собственных потребностей. Чтобы развитие могло считаться устойчивым, оно должно осуществляться с учетом достижения экономического роста, но при обеспечении его сбалансированности с потребностями общества по улучшению качества жизни и предотвращения деградации окружающей среды .

Индикаторы устойчивости должны удовлетворять следующим основным критериям:

возможность использования на макроуровне в национальном масштабе;

сочетать экологические, социальные и экономические аспекты;

понимаемы и иметь однозначную интерпретацию для лиц, принимающих решения;

иметь количественное выражение;

опираться на имеющуюся систему национальной статистики и не требовать значительных затрат для сбора информации и расчетов;

репрезентативны для международных сопоставлений;

возможность оценки во временной динамике;

иметь ограниченное число .

Международными организациями и отдельными странами предлагаются критерии и индикаторы устойчивого развития, содержащих нередко весьма сложную систему показателей. Разработка индикаторов устойчивого развития является достаточно комплексной и дорогостоящей процедурой, требующей большого количества информации, получить которую сложно или вообще невозможно (например, по многим экологическим параметрам). Можно выделить два подхода:

Построение интегрального, агрегированного индикатора, на основе которого можно судить о степени устойчивости социально-экономического развития. Агрегирование обычно осуществляется на основе трех групп показателей:

эколого-экономических,

эколого-социально-экономических,

собственно экологических.

Построение системы индикаторов, каждый из которых отражает отдельные аспекты устойчивого развития. Чаще всего в рамках общей системы выделяются следующие подсистемы показателей:

экономические,

экологические,

социальные,

институциональные .

Индикаторы устойчивого развития c классификацией по секторам:

Группа социальных индикаторов: борьба с бедностью; демографическая динамика и устойчивость; улучшение образования, осведомленности и воспитания общества; защита и улучшение здоровья людей; улучшение развития населенных мест.

Группа экономических индикаторов: международная кооперация для ускорения устойчивого развития и связанная с этим местная политика; изменение характеристик потребления; финансовые ресурсы и механизмы; передача экологически щадящих технологий, сотрудничество и создание потенциала.

Группа экологических индикаторов: сохранение качества водных ресурсов и снабжения ими; защита океанов, морей и прибрежных территорий; комплексный подход к планированию и рациональному использованию земельных ресурсов; рациональное управление уязвимыми экосистемами, борьба с опустыниванием и засухами; содействие ведению устойчивого сельского хозяйства и развитию сельских районов; борьба за сохранение лесов; сохранение биологического разнообразия; экологически безопасное использование биотехнологий; защита атмосферы; экологически безопасное управление твердыми отходами и сточными водами; экологически безопасное управление токсичными химикатами; экологически безопасное управление опасными отходами; экологически безопасное управление радиоактивными отходами.

Группа институциональных индикаторов: учет вопросов экологии и развития в планировании и управлении для устойчивого развития; национальные механизмы и международное сотрудничество для создания потенциала в развивающихся странах; международный институциональный порядок; международные правовые механизмы; информация для принятия решений; усиление роли основных групп населения .

Индикаторы - движущая сила, состояние, реагирование:

Индикаторы - движущая сила представляют собой индикаторы человеческой активности, процессов и характеристик, которые могут положительно или отрицательно влиять на устойчивое развитие. Эти индикаторы соответствуют уровню компании, отрасли или экономики.

Примеры таких индикаторов - рост населения или рост эмиссии парниковых газов.

Индикаторы состояния фиксируют характеристики устойчивого развития в данном районе в данный момент. Это может быть плотность населения, процент городского населения, доказанные запасы топлива.

К индикаторам реагирования относятся политический выбор и другие реакции на изменение характеристик устойчивого развития. Эти индикаторы указывают на волю и эффективность общества в решении проблем устойчивого развития. Примеры подобных индикаторов - затраты на улучшение здоровья, законодательство, нормирование и регулирование .

Несмотря на всю широту и глубину описанных выше подходов они обладают одним существенным пробелом - в них не учитывается «человеческий фактор, как еще одна группа критериев, отражающих состояние общественных отношений, ментальность и умонастроения населения в отношении экологически созвучного поведения. Формально этот набор критериев можно отнести к группе социальных .

1.2 Особенности и виды воздействия шума на людей и среду

Шум - совокупность звуков различной частоты и интенсивности, беспорядочно изменяющихся во времени. Орган слуха способен различать 0,1 Бел, поэтому на практике для измерения звуков и шумов применяется децибел (дБ.). Сила звука и частота воспринимаются органами слуха как громкость, поэтому при равном уровне силы звука в децибелах звуки различных частот воспринимаются как звуки, имеющие громкость. Для нормального существования, чтобы не ощущать себя изолированным от мира, человеку нужен шум в 10-20 дБ. Это шум листвы, парка или леса. Развитие техники и промышленного производства сопровождалось повышением уровня шума, воздействующего на человека, В условиях производства воздействие шума на организм часто сочетается с другими негативными воздействиями: токсичными веществами, перепадами температуры, вибрацией и другие. В производственных условиях, как правило, возникают шумы, которые имеют в своем составе различные частоты. К физическим характеристикам шума относятся: частота, звуковое давление, уровень звукового давления.

По частотному диапазону шумы подразделяются на низкочастотные - до 350 Герц (Гц), среднечастотные 350-800 Гц и высокочастотные - выше 800 Гц.

По характеру спектра шумы бывают широкополосные, с непрерывным спектром и тональные, в спектре которых имеются слышимые тона.

По временным характеристикам шумы бывают постоянные, прерывистые, импульсные, колеблющиеся во времени.

Звуковое давление Р - это среднее по времени избыточное давление на препятствие, помещенное на пути волны. На пороге слышимости человеческое ухо воспринимает при частоте 1000 Гц звуковое давление Р 0 =2 10 -5 Па, на пороге болевого ощущения звуковое давление достигает 2 10 2 Па.

Если предположить, что источник шума (двигатель) находится в точке О (рис. 1.2.1) и излучает шум в окружающее пространство, то, выделив полусферу S радиуса r и единичную площадку А на ней, можно определить, что сила звука I - количество звуковой энергии, прошедшее через единичную площадку, перпендикулярную радиусу r, в единицу времени.

Рисунок 1.2.1. Схема прохождения звука через единичную площадку

Сила звука пропорциональна квадрату звукового давления и ее выражают в Вт\м 2 . Поэтому уровень шума иногда определяют как десятичный логарифм отношения силы звука к пороговому значению: 0 = 10 -12 Вт\м 2 . В результате уровень шума (дБ) определяется по формуле

L = 10 . lg (I\I o)=20 . lg (P\P o), где

I o - пороговое значение силы звука, Вт/м 2 ;

P - звуковое давление, Па;

P o - пороговое значение звукового давления Па;

Для практических целей удобной является характеристика звука, измеряемая в децибелах, - уровень звукового давления. Уровень звукового давления N - это выраженное по логарифмической шкале отношение величины данного звукового давления Р к пороговому давлению P 0:

201g (P/P 0).

Для оценки различных шумов измеряются уровни звука с помощью шумомеров по ГОСТ 17.187-81 .

Для оценки физиологического воздействия шума на человека используется громкость и уровень громкости. Порог слышимости изменяется с частотой, уменьшается при увеличении частоты звука от 16 до 4000 Гц, затем растет с увеличением частоты до 20000 Гц. Например, звук, создающий уровень звукового давления в 20 дБ на частоте 1000 Гц, будет иметь такую же громкость, как и звук в 50 дБ на частоте 125 Гц. Поэтому звук одного уровня громкости при разных частотах имеет различную интенсивность.

Для характеристики постоянного шума установлена характеристика - уровень звука, измеренный по шкале А шумомера в дБА.

Непостоянные во времени шумы характеризуются эквивалентным (по энергии) уровнем звука в дБА, определяемым по ГОСТ 12.1.050-86.

Источники шума многообразны. Это аэродинамичные шумы самолетов, рев дизелей, удары пневматического инструмента, резонансные колебания всевозможных конструкций, громкая музыка и многое другое .

Основными источниками промышленного шума служат предприятия, среди которых особенно выделяются энергетические установки (100… 110 дБ), компрессорные станции (100 дБ). В горно-обогатительном и металлургическом производстве шум достигает до 100 дБ. Источниками шума на промышленных предприятиях, оборудованных вентиляцией с механическим побуждением, кондиционерами для обмена воздуха, приборами воздушного отопления, газодинамическими установками, являются вентиляторы, холодильные машины, электродвигатели, и воздухораспределительные установки, в том числе и элементы сети воздуховодов.

Значительный шум в городах и поселках создают транспортные средства: легковой автомобильный шум достигает значений до 85 дБ, а шум от грузовых автомашин и автобусов равен 90 дБ. Железнодорожный транспорт на современном путевом основами является самым высоким источником создания антропогенного (экологического) шума, его сила приближается к 100 дБ. Железнодорожный и автомобильный транспорт связывает города и поселки, и поэтому в России свыше 30% жителей подвержены действию сверхнормативных уровней шума (55…65 дБ и выше).

Шум, интенсивность которого колеблется между 85 и 110дБ, представляет опасность для человека. Всемирной организацией здравоохранения (ВОЗ) была разработана программа по снижению шума в городах как наиболее важной экологической проблемы современности.

Шумовыми характеристиками потоков железнодорожных поездов являются эквивалентные уровни звука (La экв) на расстоянии 7,5 м от оси колеи, ближней к расчетной точке. При интенсивности движения, например 10 поездов, эквивалентный уровень звука для пассажирских поездов равен 76 дБА, для электропоездов ~ 82 дБА и для грузовых - 86 дБА. При интенсивности, движения до 30 поездов/ч эквивалентный уровень звука увеличивается до 81…91 дБА. Внутри групп жилых домов на расстоянии 7,5 м от границ источников шума (разгрузка товаров и погрузка тары, спортивные игры и другие) эквивалентный уровень звука La экв колеблется от 58 до 75 дБА.

Источниками шума в жилых и общественных зданиях является шум улицы с его непрерывным и монотонным характером. Особенно беспокоит этот шум тех жильцов, квартиры или дома которых выходят на улицы (рисунок 1.2.2) .

Рисунок 1.2.2. Воздействие шумовых волн на здание, стоящее у магистрали

Если здание расположено на главной улице (магистрали) с большим движением, которое почти не уменьшается в течение суток, то в этом случае оно находится в самых невыгодных условиях. В домах, выходящих на большие улицы с интенсивным движением, уровни громкости шума зимой достигают 38…44 фонов (от гр р h опе - звук, голос), а летом при открытых окнах шумовой фон достигает 64… 80 фонов.

В помещениях, находящихся в зданиях, расположенных на площади, имеющих скверы с большими деревьями, шум значительно ниже, особенно это наблюдается летом, когда деревья покрыты листвой.

Кроме уличных шумов, источниками шума в здании могут быть бытовые шумы: включение радио и другой аппаратуры на большие мощности, громкие разговоры или ремонтные работы в квартире. Но могут быть и шумы от обслуживающих механизмов, например работа лифта, электромотора, неисправности в системе водоснабжения. Дело в том, что в городах построено большое количество панельных и каркасно-панельных домов, которые очень хорошо передают по этажам и помещениям любой шумовой эффект. На рисунке 1.2.3 показано распространение шума в здании .

Рисунок 1.2.3. Распространение шума в здании

В природе также существует шум в виде естественных звуков, к которым человек привык, и без них он бы многое утратил в своем мироощущении, например: шорох листьев, пение птиц, морской прибой или равномерный шум водопада, дождя.

По характеру спектра шум подразделяется: на широкополосный с непрерывным спектром шириной более одной октавы; тональный, в спектре которого имеются выраженные дискретные тона.

По временным характеристикам шум подразделяется на:

постоянный, с изменением за рабочий день не более чем на 5дБА;

непостоянный, уровень звука которого изменяется во времени более чем на 5 дБА.

Кроме того, непостоянный шум подразделяется на колеблющийся во времени:

прерывистый, уровень звука которого ступенчато изменяется на 5 дБА и более. Длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более .

1.3 Особенности и виды воздействия вибрации на людей и среду

Вибрация (от лат. vibratio - колебаться, дрожать) в русском языке имеет синонимы: сопряжение, тряска - и относится к механическим колебаниям. Принято считать, что основным признаком вибрации являются относительно малые отклонения тела или его точек при механических колебаниях. Другим признаком вибрации считается частота перемещений, совершаемых телом или его точками в единицу времени. При колебаниях тела частота может быть очень незначительной (низкой), а при вибрациях - более высокой. Можно привести такой пример: колебания судна при его качке имеют большие отклонения и малые частоты, а вибрация обшивки судна - малые отклонения и высокие частоты.

Вибрациям подвержены упругие тела - здания и сооружения, шины и оборудования, грунты и фундаменты, через которые на значительные расстояния распространяются механические волны, вибрациям подвержен и сам человек, находясь вблизи работающего оборудования (через грунт и фундамент) или работающий с оборудованием (например, рядом с вибраторами для уплотнения бетона) .

На объект, или приемник, который подвержен вибрации, передается обычно два типа возбуждения: силовое и кинематическое. Силовое возбуждение возникает при непосредственном действии внешней силы, которая во времени может быть периодической, почти периодической, произвольной и случайной, а также импульсной (с затухающими колебаниями). Кинематическое возбуждение - это передача от источника колебаний на приемник (объект), находящийся на волновом поле .

Вибрация и ее высокий фон представляют опасность для здоровья человека в тех местах, где ощущается вибрационный фон. Источниками вибрации в окружающей среде являются транспорт, установки промышленных предприятий; в жилых зданиях и сооружениях - инженерно-технологическое оборудование. По интенсивности колебаний наибольшее воздействие оказывает на человека городской транспорт, особенно трамвай, железнодорожные составы поездов, в том числе метро мелкого заложения и открытые радиусы. Вибрация, возникающая в зданиях от движения поездов и трамваев, имеет регулярный прерывистый характер. По мере удаления источника амплитуда колебаний снижается.

При распространении колебаний по высоте многоэтажного жилого дома или предприятия (например, швейной фабрики, которая сама имеет потенциально вибрационное оборудование) на верхних этажах наблюдается как ослабление, так и усиление вибрации в зависимости от резонанса. Вибрация зависит от грунтов, на которые поставлено здание или технологическое оборудование .

По физической природе вибрация, также как и шум, представляет собой колебательное движение материальных тел.

Механические колебания, распространяющиеся через плотные среды с частотой колебаний до 16 Гц (Герц - единица измерения частоты равная 1 колебанию в секунду), воспринимаются человеком как сотрясение, которое принято называть вибрацией

Параметры вибрации нормирует ГОСТ 12.1.012-78 «ССБТ. Вибрация. Общие требования безопасности» .

Вибрация в соответствии со стандартом по источникам ее возникновения подразделяется на:

Транспортную, которая возникает в результате движения автомобилей по местности и дорогам и при их строительстве;

Транспортно-технологическую, которая возникает при работе машин, выполняющих технологическую операцию в стационарном положении или при перемещении по специально подготовленной части производственного помещения, промышленной площадки;

Технологическую, которая возникает при работе стационарных машин или передается на рабочие места не имеющих источников вибрации.

По способу передачи на человека вибрация подразделяются на общую, передающуюся через опорные поверхности, и локальную (местную), передающуюся через руки человека. Основными параметрами, характеризующими вибрацию, является частота колебаний, скорость колебания и амплитуда смещения .

Скорость колебания находится в прямой зависимости от частоты колебаний и амплитуды смещения:

2пfА = wА,

где v - скорость колебания, см/с;- частота колебаний, Гц;

А - амплитуда смещения при гармоническом колебательном движении, т.е. величина наибольшего отклонения от положения равновесия, см;- круговая частота, т.е. число полных колебаний, совершенных за время, равное 2пf с.

По аналогии с шумом важной характеристикой вибрации является ее уровень, измеряемый в логарифмических единицах - децибелах.

Логарифмическое уравнение виброскорости

2 lg v/(5*10), где

Среднеквадратичная скорость, м/с;

*10 - опорная виброскорость, м/с;

При воздействии вибрации на человека наиболее существенно то, что тело человека можно представить в виде сложной динамической системы.

Многочисленные исследования показали, что эта динамическая система меняется в зависимости от поз человека, его состояния - расслабленности или напряженности - и других факторов. Для такой системы существуют опасные, резонансные частоты, если внешние силы воздействуют на человека с частотами, близкими или равными резонансным, то резко возрастает амплитуда колебаний как все: тела, так и отдельных его органов .

Для тела человека в положении сидя резонанс наступает при частоте 4-6 Гц, для головы 2С 30 Гц, для глазных яблок 60-90 Гц. При этих частотах интенсивная вибрация может привести травматизации позвоночника и костной ткани, расстройству зрения, у женщин вызвать преждевременные роды.

Колебания вызывают в тканях организма переменные механические напряжения. Изменения напряжения улавливаются множеством рецепторов трансформируются в энергию биоэлектрических биохимических процессов. Информация о действующей на человека вибрации воспринимается особым органом чувств - вестибулярным аппаратов

Вестибулярный аппарат располагается в височной кости черепа и состоит из преддверия и полукружных каналов, расположенных во взаимоперпендикулярных плоскостях. Вестибулярный аппарат обеспечивает анализ положений и перемещений головы в пространстве, активизацию тонуса мышц .

Расчет эквивалентного корректированного уровня вибрации.

Эквивалентный по энергии корректированный уровень, являющийся одночисловой характеристикой непостоянной вибрации, рассчитывается путем усреднения фактических уровней с учетом времени действия каждого по формуле:

где: L 1 , L 2 , … L n - уровни виброскорости (или виброускорения), действующие в течение времени t 1 , t 2 ,… t n соответственно;

Т = t 1 + t 2 +… + t n - общее время действия вибрации в минутах или часах .

Таблица 1.3.1. Пример расчета эквивалентного уровня вибрации

Корректированные уровни виброскорости, дБ

Время действия вибрации данного уровня в течение смены согласно технологическому регламенту, ч

Поправка на время действия вибрации данного уровня

Уровни виброскорости с учетом поправок на время действия фактора, дБ

Эквивалентный корректированный уровень виброскорости, полученный путем попарного энергетического суммирования уровней



1.4 Нормирование величины шума и вибрации

Нормирование шума - одна из важнейших задач охраны окружающей среды. Нормы шума устанавливаются исходя из технических требований и гигиенических условий труда, например на рабочих местах и на селитебных территориях, в помещениях жилых домов и общественных зданий.

К техническим требованиям нормирования шума относится установление допустимых уровней шума для нормальной эксплуатации звукочувствительных устройств, например, радио, концертных и театральных залов. Оценка шумовых характеристик и их сравнение с нормативами позволяет еще на стадии проектирования разрабатывать мероприятия по снижению этих уровней. Допустимые шумовые характеристики регламентируются:

для рабочих мест - ГОСТ 12.1.003-83;

жилых помещений - ГОСТ 12.1.036- 8 1;

территорий различного хозяйственного назначения и помещения жилых и общественных зданий - ГОСТ 23337-78;

Допустимые характеристики ультразвука регламентируются ГОСТ 12.1.001-89.

Нормируемыми параметрами (характеристикой) постоянного шума считаются уровни звукового давления L в октавных частотных полосах со среднегеометрическими частотами, в дБ, 63, 125, 250. 500, 1000, 2000, 4000, 8000 Гц.

Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в октавных частотных полосах, уровни звука и эквивалентные уровни звука для жилых и общественных зданий и их территорий принимаются в соответствии со СНиП II-12-77 «Защита от шума» и CН 2.2.4/2.1.8.562-96 .

Для оценки звукоизоляции ограждающих конструкций жилых и общественных зданий и помещений промышленных предприятий применяется индекс изоляции воздушного шума Jb и индекс приведенного уровня ударного шума под перекрытием Jy. Нормируемые индексы и расчет звукоизоляции ограждающих конструкций принимаются в соответствии со СНиП II-12-77 «Защита от шума».

Уровень звука в расчетных точках, в том числе при наличии нескольких источников шума, снижение (требуемое) уровней звука на территории или в помещениях защищаемого от шума объекта следует определять по п. 10 СНиП II-12-77.

Для снижения уровня звука на территории промышленного предприятия следует применять экраны, размещаемые между источниками шума и объектом, который подлежит защите. В качестве экранов можно использовать естественные элементы рельефа местности - выемки, кавальеры, насыпи, холмы, а также искусственные сооружения, в помещениях которых допускается уровень звука более 50 дБА. Это могут быть жилые здания с усиленной звукоизоляцией наружных ограждающих конструкций .

Здания и сооружения необходимо размещать вдоль источников шума в виде сплошной застройки и полос зеленых насаждений. Ширина полосы принимается, например, при однорядной (шахматной) посадке деревьев 10…15м, снижение уровня звука составляет 4…5 дБА, а при ширине 16…20 м соответственно 5…8 дБА. Рекомендуется делать полосы зеленых насаждений в два ряда при расстоянии между ними 3…5 м; в три ряда при расстоянии между рядами 3 м, при этом уровень звука (при двух-, и трехрядной посадке) снижается на 10… 12 дБА. Еще одна особенность применения зеленых насаждений в качестве снижения звука (шума). При посадке полос должно быть обеспечено плотное примыкание крон деревьев между собой с заполнением пространства под кронами до поверхности земли кустарником. Полоса зеленых насаждений должна быть из пород быстрорастущих деревьев и кустарников, устойчивых к условиям воздушной среды в городах, поселениях и произрастающих в соответствующей климатической зоне .

Измерение шума относится к числу главных вопросов защиты населения от его воздействия. Измерение шума на селитебной территории проводится на площадках отдыха, детских дошкольных учреждений и школ в трех точках, расположенных на ближайшей к источнику шума границе на высоте 1,2. 1,5 м от уровня поверхности площадок. На территориях, прилегающих к зданиям больниц, санаториев, жилых домов измерение производится с соблюдением таких же условий, как и у школ.

Измерения шума селитебной территории не должны проводиться во время выпадения атмосферных осадков при скорости ветра более 5 м/с. В этом случае следует применить экран для зашиты микрофона от ветра. Для измерения шума во всех случаях применяются шумомеры 1 и 2-го класса с измерительными системами, которые входят в микрофон. Результаты проведенных измерений должны представляться в форме протокола .

Нормирование вибрации. Виброзащиту наиболее эффективно можно осуществить на стадии проектирования объекта.

Часто при проектировании не учитываются уровни вибраций, и вопрос о виброзащите решается в эксплуатационный период по измеренному уровню вибраций, что не всегда возможно. Естественно, в этом случае получение исходных данных значительно упрощается, но возникает проблема виброзащиты, особенно это касается оборудования, установленного на фундаментах. Поэтому использование в современном промышленном производстве средств автоматики (станков, машин, оборудования) накладывает на вибрирующие основания достаточно жесткие технические требования.

Обеспечение допустимых параметров вибрации зависит также от конструктивных особенностей проектируемых объектов, в том числе фундаментов, конструкций надземной части здания. Как считают специалисты, важно иметь прогнозируемый уровень вибрации (методику прогнозирования), который бы позволил надежно и достаточно просто оценивать параметры колебаний в зависимости от размеров конструкций.

Следует отметить, что при проектировании объектов параметры вибраций должны регламентироваться следующими нормами: санитарно-гигиеническими и техническими для виброчувствительных машин и для строительных конструкций. От механических колебаний (вибрации) снижаются также прочность, устойчивость и долговечность зданий и самих конструкций, нарушается режим работы приборов и автоматических систем, контролирующих технологические процессы в промышленных зданиях. Можно предположить, что полностью исключить вибрацию и шум в зданиях и сооружениях невозможно. Поэтому для людей, работающих в условиях шума и вибрации, для различных видов машин и технологического оборудования в каждом конкретном случае при проектировании важно установить пределы допустимых параметров этих воздействий.

Допустимые уровни вибрации в жилых домах нормируются гигиеническими нормами «Допустимые уровни вибрации на рабочих местах, в помещениях жилых и общественных зданий» (ГН 2.2.4/2.1.8.562-96). Параметры колебаний регламентируются ГОСТ 12.1.012-90 «Вибрационная безопасность. Общие требования безопасности труда». В указанных нормативах предусмотрены предельно допустимые величины общей вибрации в абсолютных (см/с) и относительных (дБ) значениях скорости по наиболее распространенному в практике спектру частот (до 355 Гц), который включает шесть октавных частотных полос. Каждая октавная полоса имеет предельно допустимые значения среднеквадратической виброскорости или амплитуды перемещений, возбуждаемых работой машин.

В санитарно-гигиенических нормах заложена лишь качественная оценка физиологического воздействия вибрации на людей. На стадии проектирования можно наметить мероприятия и конструктивные решения, которые обеспечили бы необходимую охрану здоровья людей .


2. Материалы и методы исследований

2.1 Объект и предмет исследования

Объектом исследования является г. Вологда. В ходе работы были проведены замеры уровней шума на улицах города: ул. Прокатова (перекресток улиц Горького и Прокатова), ул. Московская (перекресток улиц Московская и Дзержинского), ул. Машиностроительная (перекресток улицы Машиностроительной и Судоремонтного переулка), ул. Окружное шоссе (2 точки: перекресток с улицей Ленинградской и с улицей Возрождения), ул. Старое шоссе, ул. Лаврова (перекресток улиц Лаврова и Чернышевского), ул. Псковская, ул. Доронинская, ул. Кирпичная (перекресток улицы Кирпичная и Республиканская), проспект Победы (пересечение проспекта Победы и улицы Воровского), ул. Чехова (перекресток Чехова - Зосимовская). На рисунке 2.1.1 наглядно представлено размещение точек замеров по территории города.

Шум относится к вредным производственным факторам, отрицательно влияющим на здоровье чело

века. Источником интенсивного шума являются машины, механизмы, технологические установки и аппараты, в которых движение газов и жидкостей происходит с большими скоростями и сопровождается пульсацией.

Уровень шума в производственном помещении на территории предприятия не должен превышать 80 дБа. Зоны

с уровнем шума свыше 85 дБа должны быть обозначены знаками безопасности. Работающих в этих зонах администрация обязана снабжать средствами индивидуальной защиты. К средствам индивидуальной защиты от шума относятся средства защиты органов слуха:

Наушники противошумные

Коллективные средства защиты от шума подразделяются на:

Оградительные;

Звукоизолирующие;

Звукопоглощающие;

Глушители шума;

Дистанционного управления.

На предприятии должен быть обеспечен контроль уровней шума на рабочих местах не реже одного

раза в год.

Вибрация также относится к вредным производственным факторам, отрицательно влияющим на здоровье человека. Качественные и количественные критерии и показатели неблагоприятного воздействия вибрации на человека – оператора в процессе труда устанавливаются санитарными нормами.

Вибрационная безопасность труда должна обеспечиваться системой технических, технологических и организационных решений и мероприятий по созданию машин и оборудования с низкой вибрационной интенсивностью:

Системой проектных и технологических решений производственных процессов и элементов производственной среды, снижающих вибрационную нагрузку на оператора;

Системой организации труда и профилактических мероприятий на предприятии, ослабляющих неблагоприятное воздействие вибрации на человека-оператора.

По способу передачи на человека различают общую и локальную вибрацию.

Общая вибрация передается через опорные поверхности на тело сидящего или стоящего человека.

Локальная вибрация передается через руки человека. Вибрация, воздействующая на ноги сидящего человека и на предплечье, контактирующее с вибрирующими поверхностями рабочего стола, может быть отнесена к локальной вибрации. Периодичность контроля вибрационной нагрузки на оператора при воздействии локальной вибрации должна быть не реже 2 раз в год, а общей не реже раза в год.

Регламентируемые перерывы продолжительностью 20-30 минут, являющихся составной частью режима труда, устанавливаются через 1-2 часа после начала смены и через 2 часа после обеденного перерыва.

К средствам защиты от вибрации относятся устройства:

Оградительные;

Виброизолирующие, виброгасяшие, и вибропоглощающие;

Автоматического контроля и сигнализации;

Дистанционного управления.

МОСКОВСКИЙ ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

Тверской филиал

ФОНДОВАЯ ЛЕКЦИЯ

по учебной дисциплине

Безопасность жизнедеятельности

Защита от шума и вибрации

Л. В. Пьянова

Тверь 2014

Фондовая лекция «Защита от шума и вибрации» обсуждена и рекомендована к изданию на заседании кафедры общегуманитарных дисциплин ТФ МГЭИ. Протокол № 2 от «15» октября 2014 года.

Рецензенты:

кандидат химических наук, доцент

Мухометзянов А. Г.

Пьянова Л. В. Защита от шума и вибрации: Фондовая лекция. - Тверь: Изд-во ТФ МГЭИ, 2014. 117 стр.

Фондовая лекция «Защита от шума и вибрации» предназначена для студентов очной и заочной формы обучения направления 030300.62 «Психология», 080100.62 «Экономика», 080200.62 «Менедждмент», 030900.62 «Юриспруденция» к валификация (степени) выпускника бакалавр Тверского филиала МГЭИ и может оказаться полезной в самостоятельном изучении проблематики безопасности жизнедеятельности человека и среды его обитания, охраны труда, экологической безопасности.

Л. В. Пьянова

Московский гуманитарно-экономический институт

2014 г.

Введение.......................................................................................................................4

1. Физические характеристики шума........................................................................9

2. Действие шума и вибрации на организм человека............................................13

3. Нормирование шума и вибрации........................................................................19

4. Устранение или уменьшение шума в источниках его образования................21

5. Общие способы борьбы с вибрацией................................................................25

6. Средства коллективной и индивидуальной защиты от шума и вибрации.....26

7. Приборы для измерения шума и вибрации......................................................34

Заключение...............................................................................................................36

Введение

С помощью слухового анализатора человек ориентируется в звуковых сигналах окружающей среды, формирует соответствующие поведенческие реакции, например оборонительные или пищедобывательные. Способность восприятия человеком разговорной и вокальной речи, музыкальных произведений делает слуховой анализатор необходимым компонентом средств общения, познания, приспособления.

Адекватным раздражителем для слухового анализатора являются звуки, т.е. колебательные движения частиц упругих тел, распространяющихся в виде волн в самых различных средах, включая воздушную, и воспринимающиеся ухом. Звуковые волновые колебания (звуковые волны) характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Человек различает звуковые волны с частотой от 20 до 20 000 Гц. Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (20 кГц) (ультразвуки), человеком не ощущаются. Звуковые волны, имеющие синусоидальные или гармонические колебания, называют тоном. Звук, состоящий из не связанных между собой частот, называют шумом. При большой частоте звуковых волн тон высокий, при малой — низкий. Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила, зависящая от амплитуды звуковых волн. Сила звука или его интенсивность воспринимаются человеком как громкость. Ощущение громкости нарастает при усилении звука и зависит также от частоты звуковых колебаний, т.е. громкость звучания определяется взаимодействием интенсивности (силы) и высоты (частоты) звука. Единицей измерения громкости звука является бел, в практике обычно используется децибел (dB), т.е. 0,1 бела. Человек различает звуки также по тембру («окраске»). Тембр звукового сигнала зависит от спектра, т.е. от состава дополнительных частот (обертонов), которые сопровождают основной тон (частоту). По тембру можно различить звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Чувствительность слухового анализатора определяется минимальной силой звука, достаточной для возникновения слухового ощущения. В области звуковых колебаний от 1000 до 3000 в 1 секунду, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот получила название речевой зоны. В данной области воспринимаются звуки, имеющие давление меньше 0,001 бара (1 бар составляет приблизительно одну миллионную часть нормального атмосферного давления). Исходя из этого в передающих устройствах, чтобы обеспечить адекватное понимание речи, речевая информация должна передаваться в речевом диапазоне частот.

Отделы слухового анализатора. Периферическим отделом слухового анализатора, превращающим энергию звуковых волн в энергию нервного возбуждения, являются рецепторные волосковые клетки кортиева органа (орган Корти), находящегося в улитке. Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20 000 наружных волосковых клеток, которые расположены на основной мембране внутри среднего канала внутреннего уха. Внутреннее (звуковоспринимающий аппарат), а также среднее (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха.

Наружное ухо за счет ушной раковиныобеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.

Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной

перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая в свою очередь сочленена со стремечком. Стремечко прилегает к мембране овального окна. Площадь барабанной перепонки (70 мм2) значительно больше площади овального окна (3,2 мм2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна примерно в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн примерно в 2 раза — следовательно, происходит такое же усиление звуковых волн на овальном окне. Таким образом, среднее ухо усиливает звук примерно в 60—70 раз. Если же учитывать усиливающий эффект наружного уха, то эта величина вырастает в 180—200 раз. Среднее ухо имеет специальный защитный механизм, представленный двумя мышцами — мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей стремечко. Степень сокращения этих мышц зависит от силы звуковых колебаний. При сильных звуковых колебаниях мышцы ограничивают амплитуду колебаний барабанной перепонки и движение стремечка, предохраняя тем самым рецепторный аппарат внутреннего уха от чрезмерного возбуждения и разрушения. При мгновенных сильных раздражениях (удар в колокол) этот защитный механизм не успевает срабатывать. Сокращение обеих мышц барабанной полости осуществляется по механизму безусловного рефлекса, который замыкается на уровне стволовых отделов мозга.

В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, вентилируя полость среднего уха и уравнивая давление в нем с атмосферным. Если внешнее давление быстро меняется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Внутреннее ухо представлено улиткой —спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен основной мембраной и мембраной Рейснера на три узкие части (лестницы). Верхний канал (вестибулярная лестница) начинается от овального окна, соединяется с нижним каналом (барабанная лестница) через геликотрему (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилимфой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним каналами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембране расположен собственно звуковосприни- мающий аппарат — орган Корти (кортиев орган) с рецепторными клетками, представляющий периферический отдел слухового анализатора. Основная мембрана вблизи овального окна по ширине составляет 0,04 мм, затем по направлению к вершине она постепенно расширяется, достигая у геликотремы 0,5 мм. Над кортиевым органом лежит текториальная (покровная) мембрана соединительнотканного происхождения, один край которой закреплен, второй — свободен. Волоски наружных и внутренних волосковых клеток соприкасаются с текториальной мембраной. При этом энергия звуковых волн трансформируется в нервный импульс.

Проводниковый отдел слухового анализатора представлен периферическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового (или кохлеарного) нерва, обра образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекреста волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый нейрон). В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии

звука.

Корковый отдел слухового анализатора находится в верхней части височной доли большого мозга (верхняя височная извилина, 41-е и 42-е поля по Бродману). Важное значение для функции слухового анализатора имеют поперечные височные извилины (извилины Гешля).

Слуховая сенсорная система дополняется механизмами обратной связи, обеспечивающими регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей. Такие пути начинаются от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах метаталамуса, задних (нижних) буграх четверохолмия, в ядрах кохлеарного комплекса. Входя в состав слухового нерва, центробежные волокна достигают волосковых клеток кортиева органа и настраивают их на восприятие определенных звуковых сигналов.

  1. Физические характеристики шума

Шум как гигиенический фактор - это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятные субъективные ощущения.

Шум как физический фактор представляет собой волнооборазно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.

Шум классифицируют по следующим признакам:

1. по характеру спектра:

- широкополосный с непрерывным спектром шириной более одной октавы;

Тональный характер шума для практических целей (при контроле его параметров на рабочих местах) устанавливают измерением в третьоктавных полосах частот по превышению уровня звукового давления в одной полосе над

соседними не менее чем на 10 дБ.

2. По временным характеристикам:

Постоянный, уровень звука которого за 8-часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 дБ А при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187;

Непостоянный, уровень звука которого за 8-часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБ А при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187.

Непостоянный шум следует подразделять на:

Колеблющийся во времени, уровень звука которого непрерывно изменяется во времени;

Прерывистый, уровень звука которого ступенчато изменяется (на 5 дБ А и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

Импульсный, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука, измеренные в дБ AI и дБ А соответственно на временных характеристиках «импульс» и «медленно» шумомера по ГОСТ 17187, отличаются не менее чем на 7 дБ.

3. По частоте:

Низкочастотный;

Среднечастотный;

Высокочастотный.

4. По природе возникновения:

Механический;

Аэродинамический;

Гидравлический;

Электромагнитный.

К физическим характеристикам шума относятся - скорость распространения; частота; мощность; давление звука (звуковое давление);

громкость.

Скорость распространения звука. Шум распространяется с гораздо меньшей скоростью, чем световые волны. Скорость звука в воздухе - примерно 330 м/с, в жидкостях и твердых телах скорость распространения шума выше, она зависит от плотности и структуры вещества.

Например, скорость звука в воде равна 1,4 км/с, а в стали - 4,9 км/с.

Частота шума. Основной параметр шума - его частота (число колебаний в секунду). Единица измерения частоты - 1 герц (Гц), равный 1 колебанию звуковой волны в секунду. Человеческий слух улавливает колебания частот от 20 Гц до 20000Гц. При работе систем кондиционирования учитывают обычно спектр частот от 60 до 4000Гц. Для физических расчетов слышимая полоса частот делится на 8 групп волн. В каждой группе определена средняя частота: 62 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2 кГц, 4 кГц и 8 кГц.

Любой шум раскладывается по группам частот, и можно найти распределение звуковой энергии по различным частотам.

Мощность звука какой-либо установки - это энергия, которая выделяется установкой в виде шума за единицу времени. Измерять силу шума в стандартных единицах мощности неудобно, так как спектр звуковых частот очень широк, и мощность звуков отличается на много порядков.

Например, сила шума при поступлении в помещение воздуха под низким давлением равна одной стомиллиардной ватта, а при взлете реактивного самолета сила шума достигает 1000 Вт.

Поэтому уровень мощности звука измеряют в логарифмических единицах - децибелах (дБ). В децибелах сила шума выражается двух- или трехзначными числами, что удобно для расчетов.

Уровень мощности звука в дБ - функция отношения мощности звуковых волн возле источника шума к нулевому значению W0, равному 10 - 12Вт.

Уровень мощности рассчитывается по формуле: Lw = 10lg(W/W0)

Например, если мощность звука вблизи источника равна 10 Вт, то уровень

мощности составит 130 дБ, а если мощность звука равна 0,001 Вт, то уровень мощности - 90 дБ.

Мощность звука и уровень мощности независимы от расстояния до источника шума. Они связаны лишь с параметрами и режимом работы установки, поэтому важны для проектирования и сравнения различных систем кондиционирования и вентиляции.

Уровень мощности нельзя измерить непосредственно, он определяется косвенно специальным оборудованием.

Уровень давления звука (Lp) - это ощущаемая интенсивность шума, измеряемая в дБ и измеряется по формуле: Lp = P/P0

Здесь P - давление звука в измеряемом месте, мкПа, а P0 = 2 мкПа - контрольная величина.

Уровень звукового давления зависит от внешних факторов: расстояния до установки, отражения звука и т.д. Наиболее простой вид имеет зависимость уровня давления от расстояния. Если известен уровень мощности шума Lw, то уровень звукового давления Lp в дБ на расстоянии r (в метрах) от источника вычисляется так: Lp = Lw - lgr - 11

Например, мощность звука холодильного блока равна 78 дБ. Уровень звукового давления на расстоянии 10 м от него равен: (78 - lg10 - 11) дБ = 66 дБ.

Если известен уровень звукового давления Lp1 на расстоянии r1 от источника шума, то уровень звукового давления Lp2 на расстоянии r2 будет вычисляться так: Lp2 = Lp1 - 20*lg(r2/r1)

Вообще, в открытом пространстве уровень звукового давления снижается на 6 дБ при увеличении расстояния до источника шума в 2 раза. В помещении зависимость будет сложнее из-за поглощения звука поверхностью пола, отражения звука и т.д.

Громкость шума. Чувствительность человека к звукам разной частоты неодинакова. Она максимальна к звукам частотой около 4 кГц, стабильна в диапазоне от 200 до 2000 Гц, и снижается при частоте менее 200 Гц

(низкочастотные звуки).

Громкость шума зависит от силы звука и его частоты. Громкость звука оценивают, сравнивая ее с громкостью простого звукового сигнала частотой 1000Гц. Уровень силы звука частотой 1000Гц, столь же громкого, как измеряемый шум, называется уровнем громкости данного шума.

При малом уровне громкости человек менее чувствителен к звукам очень низких и высоких частот. При большом звуковом давлении ощущение звука перерастает в болевое ощущение. На частоте 1 кГц болевой порог соответствует давлению 20 Па и силе звука 10 Вт/м2.

2. Действие шума и вибрации на организм человека.

Такие проблемы современных мегаполисов, как шум и вибрации, увеличиваются по своей интенсивности с каждым годом. Почему современная наука так активно в последние годы стала исследовать проблему влияния шума и вибрации на организм человека? Почему измерение вибрации стало обязательным исследованием на многих предприятиях и в организациях? Да потому, что современная медицина начала бить тревогу: растет количество профессиональных заболеваний – вибрационной болезни и тугоухости, возникающей из-за длительного воздействия шума и вибрации на работника такого предприятия. И в группах риска оказалось много профессий, связанных как раз с работой в этих условиях.

Шум - комплекс звуков, вызывающий неприятное ощущение или болезненные реакции. Шум - одна из форм физической среды жизни. Влияние шума на организм зависит от возраста, слуховой чувствительности, продолжительности действия, характера. Шум мешает нормальному отдыху, вызывает заболевания органов слуха, способствует увеличению числа других заболеваний, угнетающе действует на психику человека. Шум - такой же медленный убийца, как и химическое отравление. Первы е дошедшие до нас

жалобы на шум можно найти у римского сатирика Ювенала (60-127гг.).

Каждый человек обладает рядом специализированных периферических образований- органов чувств, обеспечивающих восприятие действующих на организм внешних раздражителей (из окружающей среды). К ним относятся органы зрения, слуха, обоняния, вкуса и осязания. Чтобы вести полноценный образ жизни человеку необходимы все эти органы, но внешние раздражители из окружающей его среды могут привести к потери одного из них.

Слух- способность организма воспринимать и различать звуковые колебания. Орган слуха - ухо, ему доступна область звуков -механических колебаний с частотой 16-20000Гц, но слуховой анализатор человека обладает акустическим рефлексом блокировки звука в ответ на интенсивный звуковой раздражитель, таким образом, орган слуха выполняет два задания: снабжает организм информацией и обеспечивает самосохранение.

Развитие техники и промышленного производства сопровождалось повышением уровня шума, воздействующего на человека. Мы живем в веке скоростей, где приемлемо применение на производстве высокоскоростных станков и агрегатов(двигатели, насосы, компрессоры, турбины, дробилки, центрифуги, и прочие установки имеющие движущие детали).

В условиях производства воздействие шума на организм часто сочетается с другими негативными воздействиями: токсичными веществами, перепадами температуры, вибрацией и др.

За последние годы в связи с увеличением различного количества транспорта, возросла интенсивность шума и в быту, поэтому как неблагоприятный фактор он приобрел большое социальное значение. Увеличение количества и развитие транспорта привело к шумовому загрязнению окружающей среды, чтобы как-то стабилизировать сложившуюся обстановку, принимается много мер, прежде всего, это требования по ограничению шума. Новые правила должны привести к существенным изменениям, которые особенно затронут ту часть населения, которая

подвергается наибольшему воздействию шума, создаваемого различными видами транспорта(грузовой транспорт, поезда, самолёты и т.д.).

Источники шума многообразны. Разные источники порождают различные шумы. Это аэродинамичные шумы самолетов, рев дизелей, удары пневматического инструмента, колебания всевозможных конструкций громкая музыка и многое другое.

Для оценки различных шумов измеряются уровни звука с помощью шумомеров по ГОСТ 17.187-81. Для оценки физического воздействия шума на человека используется громкость и уровень громкости. Порог слышимости изменяется с частотой, уменьшается при увеличении частоты звука от 16 до 4000Гц, затем растет с увеличением частоты до 20000Гц. Например, звук создающий уровень звукового давления в 20дБ на частоте 1000Гц, будет иметь такую же громкость, как и звук в 50дБ на частоте 125гц. Поэтому звук одного уровня громкости при разных частотах имеет различную интенсивность.

Для характеристики постоянного шума установлена характеристика- уровень звука, измеренный по шкале А шумомера в дБА.

Не постоянные во времени шумы характеризуются эквивалентным(по энергии) уровнем звука в дБА, определяется по ГОСТ 12.1.050-86.

Как показали многочисленные исследования шумовое загрязнение, особенно в крупных городах, практически всегда имеет локальный характер и это преимущественно вызывается средствами транспорта- городского, железнодорожного и авиационного. Уже сейчас на главных магистралях крупных городов уровни шумов превышают 90 дБ и имеют тенденцию к усилению ежегодно, что является наибольшей опасностью как для окружающей среды, так и для человека.

Шум — это неприятный или нежелательный звук либо совокупность звуков, мешающих восприятию полезных сигналов, нарушающих тишину, оказывающих вредное или раздражающее действие на организм человека, снижающих его работоспособность.

Шум является общебиологическим раздражителем и в определенных условиях может влиять на все органы и системы целостного организма, вызывая разнообразные физиологические изменения.

Шум действует на организм как стресс-фактор, вызывает изменение звукового анализатора, а также, благодаря тесной связи слуховой системы с многочисленными нервными центрами на самом различном уровне, происходят глубокие изменения в центральной нервной системе.

Наиболее опасно длительное действие шума, при котором возможно развитие шумовой болезни — общего заболевания организма с преимущественным поражением органа слуха, центральной нервной и сердечно-сосудистой систем.

Особую актуальность имеет на сегодня проблема вибрации. Наиболее благоприятные условия для распространения вибрации создаются при использовании неглубоких туннелей углубления, строительство которых является экономически целесообразным. Трассы метрополитена прокладывают под жилыми районами, а опыт эксплуатации подземных поездов свидетельствует о том, что вибрация проникает в жилые здания в радиусе 40-70 метров от туннеля метрополитена.

Вибрацией называют механические ритмичные колебания упругих тел. Чаще всего под вибрацией понимают нежелательные колебания. Аритмичные колебания называют толчками. Распространяется вибрация вследствие передачи энергии колебаний от колеблющихся частиц к соседним частицам. Эта энергия в любой момент пропорциональна квадрату скорости колебательного движения, поэтому по величине последней можно судить об интенсивности вибрации, т. е. о потоке вибрационной энергии. Поскольку скорости колебательного движения изменяются во времени от нуля до максимума, для их оценки используют не мгновенные максимальные значения, а среднеквадратичную величину за период колебания или измерения. В отличие от звука вибрация воспринимается разными органами и частицами тела. Так, при низкочастотных (до 15 Гц)

колебаниях поступательная вибрация воспринимается отолитовым, а вращательная - вестибулярным аппаратом внутреннего уха. При контакте с твердым вибрирующим телом вибрация воспринимается нервными окончаниями кожи. Сила восприятия механических колебаний зависит от биомеханической реакции тела человека, представляющего собой в определенной мере механическую колебательную систему, обладающую собственным резонансом и резонансом отдельных органов, что и определяет строгую частотную зависимость многих биологических эффектов вибрации. Так, у человека в положении сидя резонанс тела, который обусловливается влиянием вибрации и проявляется неприятными субъективными ощущениями, наступает на частотах 4-6 Гц, у человека в положении стоя - на частотах 5-12 Гц. Человек ощущает вибрацию частотой от долей герца до 800 Гц, вибрация большой частоты воспринимается подобно ультразвуковым колебаниям, вызывая ощущение тепла. Человек ощущает колебательные скорости, отличающиеся в 10 000 раз. Поэтому по аналогии с шумом интенсивность вибрации часто оценивают как уровень колебательной скорости (виброскорости), определяя его в децибелах. За пороговую колебательную скорость принята величина 5 10"8 м/с, что отвечает пороговому звуковому давлению 2 10~5 Н/м2.

Степень неблагоприятного действия вибрации зависит от ее уровня (или расстояния до источника низкочастотных колебаний), времени суток, возраста, рода деятельности и состояния здоровья человека.

Вибрация, проникающая в жилые помещения, в результате круглосуточного длительного воздействия может оказывать неблагоприятное влияние на жителей городов. Исследования, проведенные в одном из районов ФРГ, показали, что промышленные предприятия и транспорт в условиях большого города служат одной из причин вибрационного дискомфорта в квартирах. Из общего числа опрошенных 42% жителей предъявляли жалобы на легкое неудобство, 15,5% — на ощутимое неудобство, 14,4% жаловались на

раздражающее действие, и только 27,5% не ощущали никаких неудобств.

При непродолжительном действии вибрации (1,5 года) на первый план выступают функциональные нарушения ЦНС. В группе населения с более длительным сроком проживания (7 лет) чаще регистрируются нарушения деятельности сердечно-сосудистой системы.

Суть проблемы заключается в том, что постоянное повышенное значение вибрации приводит к быстрой утомляемости, нарушению нервной системы, плохому сну, головной боли. Работа в условиях постоянной вибрации может приводить к возникновению вибрационной болезни. Вибрационная патология стоит на втором месте среди профессиональных заболеваний.

Бич современного производства – локальная вибрация. Локальная вибрация вызывает главным образом спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью. Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов.

Источники вибрации могут быть внешними: транспортные средства, создающие при работе большие динамические нагрузки, которые вызывают распространение вибрации в грунте и строительных конструкциях зданий (эти вибрации часто являются также причиной возникновения шума в помещениях зданий), метрополитен, тяжелые грузовые автомобили, железнодорожные поезда, трамваи; и внутренними: инженерное и санитарно-техническое оборудование(оно может находиться в соседних помещениях вашей квартиры или офиса), лифты, насосы, станки, трансформаторы, центрифуги.

Проблема заключается в том, что постоянное повышенное значение вибрации приводит к быстрой утомляемости, нарушению нервной системы, плохому сну, головной боли. Работа в условиях постоянной вибрации может приводить к возникновению вибрационной болезни. Вибрационная патология стоит на втором месте среди профессиональных заболеваний.

3. Нормирование шума и вибрации.

Нормирование шума осуществляется по предельному спектру шума и уровню звукового давления. При первом методе предельно допустимые уровни звукового давления нормируются в октавных полосах частот со среднегеомегрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000. 4000, 8000 Гц. Совокупность девяти допустимых уровней звукового давления называется предельным спектром.

Второй метод нормирования общего уровня шума, измеренного по шкале А шумомера и называемого уровнем звука в дБА, используется аля ориентировочной оценки постоянного и непостоянного шума, так как в этом случае спектр шума неизвестен.

В производственных условиях очень часто шум имеет непостоянный характер. В этих условиях наиболее удобно пользоваться некоторой средней величиной, называемой эквивалентным (по энергии) уровнем звука Lэкв и характеризующей среднее значение энергии звука к дБА. Этот уровень измеряется специальными интегрирующими шумомерами или рассчитывается.

Нормативы уровней шума регламентируются «Санитарными нормами допустимых уровней шума на рабочих местах» № 3223—85, утвержденными Минздравом в зависимости от их классификации по спектральному составу и временным характеристикам, виду трудовой деятельности.

С точки зрения биологического воздействия существенное значение имеет спектральный состав и продолжительность действия шума. Поэтому к допустимым уровням звукового давления вводятся поправки, учитывающие спектральный состав и временную структуру шума. Наиболее неблагоприятно действуют тональные и импульсные шумы. Тональным считается шум, в котором прослушивается звук определенной частоты. К импульсным относится шум, воспринимаемый как отдельные удары и состоящий из одного или нескольких импульсов звуковой энергии с продолжительностью каждого

меньше 1 с. Широкополосным считается шум, в котором звуковая энергия распределяется по всему спектру звуковых частот. Очевидно, что с увеличением длительности воздействия шума в течение смены абсолютные значения поправок снижаются. При этом они больше для широкополосных, чем для тональных или импульсных шумов, На постоянных рабочих местах допустимый уровень звука составляет 80 дБА.

Методы гигиенической оценки вибрации рабочих мест, нормируемые параметры и их допустимые величины установлены Санитарными нормами вибрации рабочих мест СН 3044—84.

Гигиеническую опенку вибраций, воздействующих на человека на рабочем месте в производственных условиях, производят следующими методами:

1. частотный (спектральный, анализ нормируемого параметра. Он является основным методом, характеризующим вибрационное воздействие на человека;

интегральная оценка по частоте нормируемого параметра, применяемая для ориентировочной оценки;

2. доза вибрации, используемая для оценки вибрации с учетом времени воздействия.

При частотном анализе нормируемыми параметрами являются средние квадратичные значения виброскорости V и виброускорения а (или их логарифмические уровни Lv, Lа), измеренные в октавных или третьоктавных полосах частот (для общих узкополосных вибраций только в третьоктавных полосах частот).

При интегральной оценке по частоте нормируемым параметром является корректированное значение виброскорости и виброускорения и (или их логарифмические уровни Lu), измеряемые с помощью корректирующих фильтров или вычисленные по формулам.

При дозной оценке вибрации нормируемым параметром является эквивалентное по энергии корректированное значение (или его логарифмический уровень Luэкв), определяемое по формуле.

4. Устранение или уменьшение шума в источниках его образования

Мероприятия по борьбе с шумом и вибрациями можно разделить на две основные группы: организационные и технические. Основными организационными мероприятиями являются:

1. исключение из технологической схемы виброакустически активного оборудования;

2. использование оборудования с минимальными динамическими нагрузками, правильный его монтаж;

3. правильная эксплуатация оборудования, своевременное его освидетельствование и проведение профилактических ремонтов;

4. размещение шумящего оборудования в отдельных помещениях, отделение его звукоизолирующими перегородками;

5. расположение шумных цехов в отдалении от других производственных помещений;

6. дистанционное управление виброакустическим оборудованием из кабин;

7. применение СИЗ от шума и вибрации;

8. проведение санитарно-профилактических мероприятий (рациональные режимы труда и отдыха, профосмотры и т. п.) для работающих на виброакустическом оборудовании.

Главными направлениями борьбы с шумом является его ослабление или ликвидация непосредственно в источнике образования.

Это достигается заменой ударных процессов и машин безударными, изменением конструкций узлов, создающих шум (например, применением оборудования с гидроприводом вместо оборудования с кривошипным или эксцентриковыми приводами); заменой возвратно-поступательного движения деталей равномерным вращательным (например, замена штамповки при производстве печенья прессованием между валком и транспортерной лентой); применением пластмасс, текстолита, резины и других материалов для

изготовления деталей оборудования (например, замена металлических пластинчатых транспортеров в цехах фасования для транспортирования бутылок на пластмассовые с покрытием поверхности бортиков, обращенных к бутылкам, полосами из звукопоглощающих материалов, например полистиролом) .

Одним из наиболее простых и экономически целесообразных способов снижения шума от машин и механизмов в производственных помещениях является применение методов звукопоглощения и звукоизоляции.

В основу звукопоглощения положено свойство строительных материалов рассеивать энергию звуковых колебаний, преобразуя ее в тепловую. Наибольшим звукопоглощающим эффектом обладают пористые и волокнистые материалы. Звуковые волны при встрече с пористой преградой частично отражаются и частично поглощаются. На основе закона сохранения энергии имеем

Уде α, β, τ — соответственно коэффициенты звукопоглощения, отражении н звукопроводимости преграды, характеризующие ее соответствующие свойства.

Где Епогл, Еотр, Епрот, Епад — соответственно поглощенная, отраженная, прошедшая н падающая на преграду звуковая энергия.

Звукопоглощающими материалами считаются имеющие α>0,2 (фибролитовые плиты, стекловолокно, минеральная вата, полиуретановый поропласт, пористый по-ливинилхлорид и др.). Звукопоглощающие покрытия и облицовки снижают общий уровень шума не более чем на 8—10 дБ, а в отдельных октавных полосах спектра шума —до 12—15 дБ.

Звукопоглощающие покрытия и облицовки обычно размещают на потолке и стенах и особенно эффективны в помещениях с высокими потолками и большой длины. Для получения максимального эффекта площадь облицованной поверхности должна составлять не менее. 60% общей площади ограничивающих помещение поверхностей. Если площадь свободных поверхностей из-за световых проемов менее указанной, дополнительно следует применять штучные (функциональные) поглотители, подвешиваемые над и вблизи шумного оборудования. Штучные поглотители представляют собой плоские кулисы и балки или объемные конструкции в виде призм, шаров и т. п., заполненных звукопоглощающим материалом (стекловолокно и т. п.).

Для предупреждения распространения шума его источник изолируется (частично или полностью) с помощью ограждений (стен, перегородок, перекрытий, кожухов и экранов), отражающих звуковую энергию. Звукоизолирующая способность ограждений зависит от акустических свойств материалов (скорости звука в поле), геометрических размеров, числа слоев материала, массы, упругости, качества крепления ограждения, частоты его собственных колебаний и частотной характеристики шума.

Акустические экраны представляют собой щиты, облицованные со стороны источника шума звукопоглощающим материалом толщиной не менее 50—60 мм. Их следует применять для защиты от шума обслуживаемого и соседних агрегатов, если звукопоглощающие облицовки не обеспечивают соблюдения гигиенических нормативов. Их назначение — снижение интенсивности прямого звука или отгораживание шумного оборудования или участков от остальной части помещения. Экран является преградой, за которой образуется акустическая тень со сниженным уровнем звукового давления прямого шума. Он наиболее эффективен против шума высоких и средних частот и дает малый эффект для низкочастотного шума, огибающего экраны за счет дифракции. Линейные размеры экрана не менее чем в 2—3 раза должны превосходить линейные размеры источника шума. Их целесообразно применять

для защиты от источников шума, создающих уровни звукового давления в рассматриваемых точках, превышающие допустимые не менее чем на 10 дБ и не более чем на 20 дБ.

Звукоизолирующие качества ограждения определяются коэффициентом звукопроводимости. Для диффузного звукового поля, в котором все направления распространения прямых и отраженных звуковых волн равновероятны, величина звукоизоляции ограждения может быть рассчитана по формуле (в дБ): R=101gl/τ.

Глушители шума, распространяющегося по каналам, возникающего на выходе вентиляторов, на входе и выходе компрессоров, разделяются на активные и реактивные (рис. 46). Активные представляют собой канал, облицованный звукопоглощающим материалом. Они используются для борьбы с шумом со сплошным широкополосным спектром. Реактивные 1лушнтели применяются для борьбы с шумом с резко выраженными дискретными составляющими (выхлопом поршневых двигателей внутреннего сгорания, компрессоров и т. п.) и выполняются в виде камер расширения и сужения, с перегородками и т. п.

Особо нужно отметить, что традиционные методы борьбы с шумом с помощью звукоизоляции и звукопоглощения малоэффективны при инфразвуке. В этом случае первостепенным является борьба с этим вредным производственным фактором в источнике его возникновения.

Основными мероприятиями по борьбе с инфразвуком являются:

Повышение быстроходности машин, что обеспечивает перевод максимума излучений в область слышимых частот;

Повышением жесткости конструкций больших размеров;

Устранение низкочастотных вибраций;

Установка глушителей реактивного типа, в основном резонансных и камерных.

Основными мерами борьбы с ультразвуком являются повышение рабочих частот; использование звукоизолирующих кожухов и экранов из листовой стали

толщиной 1,5—2 мм, покрытые слоем резины до I мм; устранение непосредственного контакта рабочих с источником ультразвуковых колебаний за счет механизации и автоматизации процессов.

5. Общие способы борьбы с вибрацией

Главными способами борьбы с вибрацией являются виброизоляция и вибропоглощение. В основу первого положено снижение передаваемой от машин и механизмов вибрации на основание путем размещения между ними упругих элементов или амортизаторов, а в основу второго — рассеивание энергии колебаний, покрытиями с большим внутренним трением.

Амортизаторы для изоляции от вибрации изготовляются из пружин, резиновых прокладок, в виде гидравлических или пневматических устройств, -а также их комбинации. При вертикальных колебаниях используются опорные или подвесные амортизаторы, а при одновременном действии вертикальных и горизонтальных колебаний — сочетание указанных амортизаторов, размещаемых как по вертикали, так и в горизонтальной плоскости. Обладающие высокой виброизолирующей способностью и долговечностью пружинные амортизаторы имеют небольшое внутреннее трение, в связи с чем плохо рассеивают энергию колебаний, затухание которых замедляется особенно в резонансном режиме при пуске и остановке машины.

Виброизолирующая способность резиновых амортизаторов ниже пружинных, но большое внутреннее сопротивление (коэффициент неупругого сопротивления) обеспечивает значительное снижение амплитуды собственных колебаний и времени их затуханий на резонансных режимах.

Для повышения устойчивости и уменьшения амплитуды колебаний машины ее следует монтировать на тяжелой металлической раме, чем достигается увеличение массы всей виброизолируемой системы, опирающей на виброопоры типа ОВ.

Для снижения вибрации ограждений, кожухов, транспортных и вентиляционных коммуникаций в резонансных режимах применяется вибропоглощение с помощью покрытий их поверхности материалами с большим внутренним трением (резина, пластики, мастики). Их наносят в местах максимальных амплитуд вибраций, определяемых по значениям виброскорости.

  1. Средства коллективной и индивидуальной защиты от шума и вибрации

Применяемые средства защиты от шума и вибрации подразделяются на средства коллективной защиты (СКЗ) и индивидуальной защиты (СИЗ).

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных и малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Наиболее рациональным методом является борьба с шумом в источнике возникновения (уменьшение звуковой мощности Р). Причиной возникновения шумов могут быть механические, аэродинамические, гидродинамические и электромагнитные явления, обусловленные конструкцией и характером работы машин и механизмов, а также неточностями, допущенными в процессе изготовления и условиями испытания и эксплуатации. Для снижения шума в источнике возникновения могут успешно применяться следующие мероприятия: замена ударных механизмов и процессов безударными, например, замена ударной кленки сваркой, рихтовки - вальцовкой, использование гидропривода вместо кривошипно-шатунных и эксцентриковых приводов; применение малошумных соединений, например, подшипников скольжения,

косозубых, шевронных и других специальных зацеплений; применение в качестве конструкционных материалов с высоким внутренним трением, например замена металлических деталей пластмассовыми и другими «незвучащими» материалами; повышение требований к балансировке роторов; изменение режимов и условий работы механизмов и машин; применение принудительной смазки в сочленениях для предотвращения их износа и шума от трения. Важное значение имеет своевременное техническое обслуживание оборудования, при котором обеспечивается надежность крепления и правильное регулирование сочленений.

Комплекс мероприятий, направленных на уменьшение шума в источнике, может обеспечить снижение уровня звука на 10 - 20 дБ(А) и более.

1. Изменение направленности излучения. При проектировании установок с направленным излучением необходима соответствующая ориентация этих установок по отношению к рабочим местам, поскольку величина показателя направленности может достигать 10 - 15 дБ. Например, отверстие воздухозаборной шахты вентиляционной установки необходимо располагать так, чтобы максимум излучаемого шума был направлен в противошумную сторону от рабочего места или жилого дома.

2. Рациональная планировка предприятий и цехов. Шум на рабочем месте может быть уменьшен за счет увеличения расстояния от источника шума до расчетной точки. Внутри здания такие помещения должны располагаться вдали от шумных помещений так, чтобы их разделяло несколько других помещений. На территории предприятия более шумные цехи необходимо концентрировать в одном-двух местах. Расстояние между тихими помещениями (конструкторское бюро, заводоуправление) и шумными цехами должно обеспечивать необходимое снижение шума.

  1. Акустическая обработка помещений. Интенсивность шума в помещениях зависит не только от прямого, но и от отраженного звука, поэтому для уменьшения последнего применяют звукопоглощающие облицовки

поверхностей помещения и штучные (объемные) поглотители различных конструкций, подвешиваемые к потолку помещений. Процесс поглощения звука происходит путем перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в пористом материале. Для большей эффективности звукопоглощения пористый материал должен иметь открытые со стороны падения звука и незамкнутые поры.

Уменьшение шума на пути его распространения применяют, когда перечисленные выше методы не обеспечивают требуемого снижения шума. Снижение шума достигается за счет уменьшения интенсивности прямого шума путем установки звукоизолирующих перегородок, кожухов, экранов и т.п. Сущность звукоизоляции ограждения состоит в том, что падающая на него энергия звуковой волны отражается в значительно большей степени, чем проходит за ограждение.

Рис. 1. Средства коллективной защиты от шума на пути его распространения

Для борьбы с вибрацией машин и оборудования и защиты работающих от

вибрации используют различные методы. Борьба с вибрацией в источнике возникновения связана с установлением причин появления механических колебаний и их устранением, например замена кривошипных механизмов равномерно вращающимися, тщательный подбор зубчатых передач, балансировка вращающихся масс и т.п. Для снижения вибрации широко используют эффект вибродемпфирования - превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют материалы с большим внутренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты. Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизоляции. Для этого на пути распространения вибрации вводят дополнительную упругую связь в виде виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин. В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.

Важным для снижения опасного воздействия вибрации на организм человека является правильная организация режима труда и отдыха, постоянное медицинское наблюдение за состоянием здоровья, лечебно-профилактические мероприятия, такие как гидропроцедуры (теплые ванночки для рук и ног), массаж рук и ног, витаминизация и др. Для защиты рук от воздействия ультразвука при контактной передаче, а также при контактных смазках и т.д. операторы должны работать в рукавицах или перчатках, нарукавниках, не пропускающих влагу или контактную смазку.

Рис. 2. Классификация методов и средств защиты от вибрации

Средствами индивидуальной защиты от шума являются ушные вкладыши, наушники и шлемофоны. Эффективность индивидуальных средств защиты зависит от используемых материалов, конструкции, силы прижатия, правильности ношения. Ушные вкладыши вставляют в слуховой канал уха. Их изготовляют из легкого каучука, эластичных пластмасс, резины, эбонита и ультратонкого волокна. Они позволяют снизить уровень звукового давления на 10...15 дБ. В условиях повышенного шума рекомендуется применять наушники, которые обеспечивают надежную защиту органов слуха. Так, наушники ВЦНИОТ снижают уровень звукового давления на 7...38 дБ в диапазоне частот 125...8000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, которые герметично закрывают всю околоушную область и снижают уровень звукового давления на 30...40 дБ в диапазоне частот 125...8000 Гц.

Средствами индивидуальной защиты работающего от воздействия общей вибрации применяют обувь с амортизирующими подошвами.

Общие технические требования на специальную виброзащитную обувь введены ГОСТ 12.4.024-76. Такую обувь изготовляют из кожи, искусственных, синтетических, текстильных материалов и комбинированной (из данных материалов). Она предназначена для защиты работающих от воздействия общей производственной вертикальной вибрации в диапазоне частот свыше 11 Гц и выпускается в виде сапог, полусапог и полуботинок мужских и женских. Она предназначена для индивидуальной защиты от вибраций и ударов энергией 5 Дж. Одновременно с защитой от вибраций спецобувь защищает ноги работающего от нетоксичной пыли и ударов энергией до 50 Дж (сапоги и полусапоги).

Применение специальной конструкции подошвы с использованием упругодемпфирующих материалов делает обувь эффективной при виброзащите.

Значительное внимание уделено защите рук от вибраций, мероприятия по которой изложены в ряде стандартов. Например, требования ГОСТ 12.4.002-74, ГОСТ 12.4.20-75 распространяются на средства индивидуальной защиты рук работающего от вибрации, защитные свойства которых обеспечиваются применением упругодемпфирующих материалов. Это могут быть рукавицы с упругодемпфирующими вкладышами; рукавицы и перчатки с мягкими наладонниками; упруго-демпфирующие прокладки и пластины для обхвата вибрирующих рукояток и деталей и т. п.

Эффективность этих средств определяется степенью снижения уровня вибрации, передаваемой на руки. Она равна разности уровней (или отношению абсолютных значений) колебательных скоростей при замере без применения средств индивидуальной защиты и с их использованием.

Защита от ультразвука включает в себя использование изолирующих корпусов и экранов, изоляцию излучающих установок, оборудование дистанционного управления, применение средств индивидуальной защиты.

Для локализации ультразвука обязательным является применение звукоизолирующих кожухов, полукожухов, экранов. Если эти меры не дают положительного эффекта, то ультразвуковые установки нужно размещать в отдельных помещениях и кабинах, облицованных звукопоглощающими материалами.

Наиболее распространенными средствами индивидуальной защиты при работе с ультразвуком являются противошумы. Для защиты рук от воздействия контактного ультразвука необходимо применять две пары перчаток - резиновые (наружные) и хлопчатобумажные (внутренние) или только хлопчатобумажные.

Требования по ограничению неблагоприятного влияния ультразвука на работающих включают следующее:

Запрещается непосредственный контакт человека с рабочей поверхностью источника ультразвука и с контактной средой. Для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых, жидких, газообразных средах необходимо применять нарукавники, рукавицы или перчатки (наружные резиновые и внутренние хлопчатобумажные);

При систематической работе с источниками контактного ультразвука в течение более 50% рабочего времени необходимо устраивать два регламентированных перерыва - десятиминутный перерыв за 1-1,5 часа до и пятнадцатиминутный перерыв через 1,5-2 часа после обеденного перерыва для проведения физиопрофилактических процедур (тепловых гидропроцедур, массажа, ультрафиолетового облучения), а также лечебной гимнастики, витаминизации и т.п.;

Организационно-профилактические мероприятия заключаются в проведении инструктажа и установлении рациональных режимов труда и отдыха. К работе с ультразвуковыми источниками допускаются лица не моложе 18 лет, прошедшие соответствующий курс обучения. Лица, подвергающиеся в процессе трудовой деятельности воздействию контактного ультразвука, подлежат предварительным, при приеме на работу, и периодическим

медицинским осмотрам.

Снижение неблагоприятного воздействия инфразвука достигается комплексом инженерно-технических и медицинских мероприятий, из которых основными являются: ослабление инфразвука в его источнике, устранение причин воздействия; изоляцию инфразвука; поглощение инфразвука, постановку глушителей; индивидуальные средства защиты; медицинскую профилактику.

Борьба с неблагоприятным воздействием инфразвука должна вестись в тех же направлениях, что и борьба с шумом. Наиболее целесообразно уменьшать интенсивность инфразвуковых колебаний на стадии проектирования машин или агрегатов. Первостепенное значение в борьбе с инфразвуком имеют методы, снижающие его возникновение и ослабление в источнике.

Ультразвук представляет собою механические колебания упругой среды, распространяющиеся в ней. К ультразвуку относят колебания с частотой свыше 20000Гц, которые находятся выше порога слышимости и не воспринимаются человеческим ухом.Воздействие ультразвука на человека сопровождается структурными изменениями в головном мозге, вегетативных отделах центральной и периферической нервной системы, в стенках сосудов. Ультразвук широко применяется в медицине для лечения и диагностики, в различных областях техники и промышленности для анализа и контроля: дефектоскопия, структурный анализ вещества, определение физико-химических свойств металлов. Наиболее широкой областью использования ультразвука являются технологические процессы в промышленности: очистка и обеззараживание деталей, механическая обработка твёрдых и хрупких материалов, сварка, пайка, лужение, электролитические процессы, ускорение химических реакций и др.

Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Ультразвуковые установки можно располагать в специальных помещениях.

Для защиты от ультразвука, который передается через воздух, применяетсяметод звукоизоляции. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях из звукопоглощающих материалов. Ультразвук, передающийся контактным путем, нормируется «Санитарными нормами и правилами».Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях.

7. Приборы для измерения шума и вибрации

Основными приборами для измерения шума являются шумомеры. В шумомере механические звуковые колебания, воспринимаемые микрофоном, преобразуются в электрические, которые усиливаются и затем, пройдя через корректирующие фильтры и выпрямитель, регистрируются стрелочным прибором. Диапазон измеряемых суммарных уровней шума обычно составляет 30—130дБ при частотных границах 20—16 000 Гц.

Для определения спектра шума и его уровней в октавных полосах шумомер подключают к фильтрам и анализаторам.

Для измерений используют отечественные шумомеры Ш-71, ПИ-14, ИШВ-1 в комплекте с октавными фильтрами. Широкое распространение в нашей стране получила акустическая аппаратура фирм RFT (Германия) и «Брюль и Къер» {Дания).

Шумоизмерительные средства состоят из шумомера (в соответствии с ГОСТ 17187-71) и октавных электрических фильтров, пропускающих определенную полосу частот электрических колебаний.

Действие шумомера основано на преобразовании микрофоном звуковых колебаний в электрические, которые после усиления и прохождения через октавные фильтры передаются измерительному прибору - стрелочному индикатору.

На практике применяются измерительные системы типа ИШВ-1 (со встроенными октавными фильтрами) завода «Виброприбор» (г. Таганрог) или ШВК-1 (с отдельными фильтрами типа ФЭ-2 того же завода) и типа 00017 (со встроенными фильтрами) фирмы RFT ГДР.

Для измерения только уровня звука без частотного анализа используют шумомеры типов «Шум-1, ШМ-1, Ш-63 или 00014 фирмы RFT (ГДР).

Для ультразвуковых шумов (частота более 11,2 кГц) нормируемые параметры установлены ГОСТ 12.1.001-75 «ССБТ. Ультразвук. Общие требования безопасности».

Вибрация измеряются приборами, основанными на механических и электрических методах. Электроизмерительные приборы обеспечивают более высокую точность измерения в широком диапазоне частот вибраций большой и малой интенсивности. Они позволяют записывать виброграммы на значительном расстоянии от объекта вибрации, что обеспечивает безопасность и удобство проведения работ по измерениям.

Измерение вибраций производится согласно ГОСТ 12.4.012-75 «ССБТ. Средства измерения и контроля вибраций на рабочих местах. Технические требования». Этим требованиям отвечает шумомер типа ШВК-1, снабженный датчиком вибраций.

Для стационарного оборудования точки измерения вибраций выбирают на рабочих местах. Датчик вибрации крепят к рабочей площадке или сиденью работающего. Локальные вибрации, передающиеся на pyки при работе с ручными машинами, измеряют по виброскорости в среднегеометрических октавных полосах от 8 до 1000 Гц. Датчик вибрации крепят в местах контакта рук с вибрирующими поверхностями. Ручные машины должны соответствовать

требованиям ГОСТ 17770-72 «Машины ручные. Допустимые уровни вибрации».

Заключение

Рассмотренные в лекции факторы — шум, вибрация, инфразвук и ультразвук - являются вредными, отрицательно влияющими на работоспособность, вызывающие профессиональные заболевания и другие неблагоприятные последствия.

Шум представляет собой волнообразно распространяющееся механическое колебательное движение частиц упругой (газовой, жидкой или твёрдой) среды. Действие его на организм человека связано главным образом с применением нового, высокопроизводительного оборудования, с механизацией и автоматизацией трудовых процессов: переходом на большие скорости при эксплуатации различных станков и агрегатов. Длительное воздействие на организм человека шума и вибрации приводит к развитию хронического переутомления, способствует развитию общих и профессиональных заболеваний, снижению слуха, нарушениям со стороны центральной нервной системы и сердечно-сосудистой системы человека.

Инфразвук представляет собой механические колебания, распространяющиеся в упругой среды с частотами менее 20Гц, находящимися ниже порога слышимости человека. В отличие от шума инфразвук распространяется на большие расстояния вследствие малого поглощения. При воздействии инфразвука на человека происходят изменения ритмов дыхания и биений сердца, расстройства желудка и центральной нервной системы, головные боли.

В профилактике вредного воздействия факторов большое значение имеет предупредительный и текущий санитарные надзоры и медицинская профилактика.

Основные мероприятия для борьбы с шумом: устранение причины шума или существенное его ослабление в самом источнике при разработке технологических процессов и проектирования оборудования; изоляция источника шума от окружающей среды средствами звука - и виброзащиты, звука - и вибропоглощения; уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий; рациональная планировка помещений; применение средств индивидуальной защиты от шума; рационализация режима труда в условиях шума; профилактические мероприятия медицинского характера. Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные.К средствам индивидуальной защиты (противошумам) относят вкладыши, наушники и шлемы.

Средства защиты снижения уровня инфразвука: увеличение частот вращения валов до 20 и больше оборотов в секунду; повышение жесткости колеблющихся конструкций больших размеров;устранение низкочастотных вибраций; внесение конструктивных изменений в строение источников.

Измерение уровней шума производят на рабочих местах или в рабочих зонах для сопоставления с требованиями санитарных норм, а также для оценки шумовых характеристик машин и оборудования с целью разработки мероприятий по борьбе с шумом. Указания по измерению и гигиенической оценке шума даны в ГОСТ 12.1.003-76 и ГОСТ 20445-75 «Здания и сооружения промышленных предприятий. Метод измерения шума на рабочих местах», а также в Методических указаниях по измерению и гигиенической оценке производственных шумов 1844-78 Минздрава СССР.

С этой целью используют частотный спектр измеренного уровня звукового давления в октавных полосах частот, который сравнивают с предельным спектром, нормированным в ГОСТ 12.1.003-76 (табл. 6.1 дана с сокращениями).

Таблица 1. Допустимые уровни звукового давления и уровни звука

Рабочие места

Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц

63, 125, 250, 500, 1000, 2000 4000, 8000

Уровень звука и эквивалентный уровень звука, дБА

Помещения КБ, лабораторий для теоретических работ

Помещения управлений, рабочие комнаты

Кабины наблюдений и дистанционного управления с речевой телефонной связью, помещения и участки точной сборки

Лаборатории для проведения экспериментальных работ

Для ориентировочной оценки шумовой обстановки на рабочем месте допускается в качестве характеристики постоянного шума использовать одночисловой параметр (независимый от частоты), так называемый уровень звука в дБА, измеренный без частотного анализа - по шкале А шумомера, которая приблизительно соответствует частотной характеристике слуха человека.

Характеристикой непостоянного шума на рабочих местах является эквивалентный (по энергии) уровень звука в дБА, определяемый также по шкале А шумомера.

Слуховой аппарат человека более чувствителен к звукам высоких частот, поэтому нормированные значения звукового давления уменьшаются с увеличением частоты.

Характеристикой постоянного и непостоянного (кроме колеблющегося во времени) шумов на рабочих местах являются уровни звуковых давлений в октавных полосах частот от 63 до 8000 Гц.

Характеристикой колеблющегося во времени шума на рабочих местах (например, во время работы металлорежущего станка с переменным режимом работы) является эквивалентный (по энергии) уровень звука в дБА, определяемый по ГОСТ 20445-75 и оказывающий такое же влияние на слуховой аппарат, как и постоянный шум такого же уровня.

Основная литература:

1. Каракеян В. И. , Никулина Н. М. Безопасность жизнедеятельности. Учебник.- М.- « Юрайт »,- 2014

2. Холостова Е. И., Прохорова О. Г. Безопасность жизнедеятельности. Учебник.-

М.- «Дашков и К»,- 2013

Дополнительная литература:

1. Алексеев В.С. Безопасность жизнедеятельности. Конспект лекций / В.С.Алексеев, О.И.Жидкова, Н.В.Ткаченко. - М.: Эксмо, 2008. - 160 с. С.24-26.

2. Девясилов В.А. Охрана труда: учебник / В.А.Девисилов. - М.: ФОРУМ, 2009. - 496 с. С.145-168.

3. Михнюк Т.Ф. Охрана труда: учеб.пособие для студентов / Т.Ф.Михнюк. - Минск: ИВЦ Минфина, 2010. - 320 с. С.111-133.


^ 5. 6 Защита от шума и вибрации

5.6.1 Шум, его влияние на организм человека и гигиеническое нормирование

Шумом называют всякий неблагоприятно действующий на че-ловека звук. Обычно шум является сочетанием звуков различ-ной частоты и интенсивности. С физической точки зрения звук представляет собой механические колебания упругой среды. Звуковая волна характеризуется звуковым давлением р, Па, ко-лебательной скоростью υ, м/с, интенсивностью I, Вт/м 2 , и ча-стотой - числом колебаний в секунду ƒ, Гц.

Звуковые колебания какой-либо среды (например, воздуха) возникают при нарушении ее стационарного состояния под воздействием возмущающей силы. Частицы среды начинают колебаться относительно положения равновесия, причем ско-рость этих колебаний (колебательная скорость) значительно меньше скорости распространения звуковых волн (скорости звука), которая зависит от упругих свойств, температуры и плотности среды.

Во время звуковых колебаний в воздухе образуются обла-сти пониженного и повышенного давления, которые опреде-ляют звуковое давление.

^ Звуковым давлением называется разность между мгно-венным значением полного давления и средним давлением в невозмущенной среде.

При распространении звуковой волны в пространстве про-исходит перенос энергии. Количество переносимой энергии определяется интенсивностью звука. Средний поток энергии в какой-либо точке среды в единицу времени, отнесенный к единице площади поверхности, нормальной к направлению распространения волны, называется интенсивностью звука в данной точке.

Характеристикой источника шума служит звуковая мощ- ность Р, которая определяется общим количеством звуковой энергии, излучаемой источником шума в окружающее про-странство за единицу времени.

Слуховой орган человека воспринимает в виде слышимого звука колебания упругой среды, имеющие частоту примерно от 20 до 20 000 Гц, но наиболее важный для слухового восприятия интервал от 45 до 10 000 Гц.

Восприятие человеком звука зависит не только от его ча-стоты, но и от интенсивности и звукового давления. Наимень-шая интенсивность I 0 и звуковое давление Р 0 , которые воспри-нимает человек, называются порогом слышимости. Пороговые значения I 0 и Р 0 зависят от частоты звука. При частоте 1000 Гц звуковое давление Р 0 = 2 · 10 -5 Па, I 0 = 10 -12 Вт/м 2 . При звуко-вом давлении 2 · 10 2 Па и интенсивности звука 10 Вт/м 2 возни-кают болевые ощущения (болевой порог). Между порогом слышимости и болевым порогом лежит область слышимости. Разница между болевым порогом и порогом слышимости очень велика. Чтобы не оперировать большими числами, ученый А. Г. Белл предложил использовать логарифмическую шкалу. Логарифмическая величина, характеризующая интен-сивность шума или звука, получила название уровня интенсив-ности L шума или звука, которая измеряется в безразмерных единицах белах (Б): L=lg(I/I 0), где I - интенсивность звука в данной точке; I 0 - интенсивность звука, соответствующая по-рогу слышимости.

Так как интенсивность звука пропорциональна квадрату звукового давления, то для уровня звукового давления можно записать:

Ухо человека реагирует на величину в 10 раз меньшую, чем бел, поэтому распространение получила единица децибел (дБ), равная 0,1 Б, тогда

Уровнями интенсивности шума обычно оперируют при вы-полнении акустических расчетов, а уровнями звукового давле-ния - при измерении шума и оценке его воздействия на челове-ка, так как наш орган слуха чувствителен не к интенсивности звука, а к среднеквадратичному давлению.

Получить представление об уровнях звукового давления различных источников шума можно по табл. 13.

Таблица 13

Источник шума


Звуковое давление, Па

Уровень

Звукового

давления, дБ


Шепот на расстоянии 0,3 мм

2 · 10 -3

40

Речь средней громкости на рас-

2 · 10 -2 ...1 · 10 -1

60...74

стоянии 1 м

Металлорежущие, ткацкие и дере-

2 · 10 -1 ...2

80... 100

вообрабатывающие станки (на рабо-

чем месте)

Пневмопрессы, пневмоклепка на

2 · 10

120

расстоянии 1 м

Реактивные двигатели на расстоя-

Свыше 2 · 10 2

Свыше 140

нии 2...3 м от выхлопа

По временным характеристикам шумы делятся на по-стоянные и непостоянные. Постоянным считается такой шум, уровень звука которого за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА. Непостоянные шумы, уро-вень звука которых изменяется за 8-часовой рабочий день бо-лее чем на 5 дБА, в свою очередь делятся на колеблющиеся во времени, прерывистые и импульсные (состоящие из сигналов длительностью менее 1 с).

Субъективное восприятие шума человеком значительно от-личается от описанных физических характеристик звука, так как слуховой орган неодинаково чувствителен к звукам раз-личных частот. Звуки малой частоты человек воспринимает как менее громкие по сравнению со звуками большой частоты той же интенсивности. Поэтому для оценки субъективного ощуще-ния громкости шума введено понятие уровня громкости, ко-торый отсчитывается от условного нулевого порога. Единицей уровня громкости является фон. Он соответствует разности уровней интенсивности в 1 Б эталонного звука при частоте 1000 Гц. Таким образом, на частоте 1000 Гц уровни громкости (в фонах) совпадают с уровнями звукового давления (в децибе-лах). Уровень громкости является физиологической характери-стикой звуковых колебаний. С помощью специальных физио-логических исследований были построены кривые равной громкости, по которым можно определить уровень громкости любого звука с заданным уровнем звукового давления (рис. 16).

Многочисленными исследованиями установлено, что шум является общебиологическим раздражителем и в определенных условиях может влиять на все органы и системы орга-низма человека. Наиболее полно изучено влияние шума на слу-ховой орган человека. Интенсивный шум при ежедневном воздействии приводит к возникновению профессионального за-болевания - тугоухости, основным симптомом которого является постепенная потеря слуха на оба уха, первоначально лежащая в области высоких частот (4000 Гц), с последующим распространением на более низкие частоты, определяющие способность воспринимать речь.

При очень большом звуковом давлении может произойти разрыв барабанной перепонки. Наиболее неблагоприятными для органа слуха является высокочастотный шум (1000...4000 Гц).

Кроме непосредственного воздействия на орган слуха шум влияет на различные отделы головного мозга, изменяя нормальные процессы высшей нервной деятельности. Это так на-зываемое неспецифическое воздействие шума может возник-нуть даже раньше, чем изменения в органе слуха. Характерны-ми являются жалобы на повышенную утомляемость, общую слабость, раздражительность, апатию, ослабление памяти, пот-ливость и т. п.

Рис. 16. Кривые равной громкости

Исследованиями последних лет установлено, что под влия-нием шума наступают изменения в органе зрения человека (снижается устойчивость ясного видения и острота зрения, из-меняется чувствительность к различным цветам и др.) и вести-булярном аппарате; нарушаются функции желудочно-кишечно-го тракта; повышается внутричерепное давление; происходят нарушения в обменных процессах организма и т. п.

Шум, особенно прерывистый, импульсный, ухудшает точ-ность выполнения рабочих операций, затрудняет прием и вос-приятие информации. В документах Всемирной организации здравоохранения (ВОЗ) отмечается, что наиболее чувстви-тельными к шуму являются такие операции, как слежение, сбор информации и мышление.

В результате неблагоприятного воздействия шума на рабо-тающего человека происходит снижение производительности труда, увеличивается брак в работе, создаются предпосылки к возникновению несчастных случаев. Все это обусловливает большое оздоровительное и экономическое значение мероприя-тий по борьбе с шумом.

Для постоянных шумов нормирование ведется по предель-ному спектру шума. Предельным спектром называется совокуп-ность нормативных уровней звукового давления в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Каждый предельный спектр обозначается цифрой, которая соответствует допусти-мому уровню шума (дБ) в октавной полосе со среднегеометри-ческой частотой 1000 Гц. Например, ПС-85 означает, что в этом предельном спектре допустимый уровень шума в октав-ной полосе со среднегеометрической частотой 1000 Гц равен 85 дБ.

Для ориентировочной оценки ГОСТ допускает за характе-ристику постоянного шума на рабочем месте принимать уро-вень звука в дБА, измеряемый по шкале «А» шумомера и определяемый по формуле

Где Р А - среднеквадратичное звуковое давление с учетом кор-рекции шумомера, Па;

Р 0 = 2 · 10 -5 - пороговое среднеквадра-тичное звуковое давление, Па.

В производственных условиях очень часто шум имеет непо-стоянный характер. В этих условиях наиболее удобно пользо-ваться некоторой средней величиной, называемой эквива-лентным (по энергии) уровнем звука L экв и характеризующей среднее значение энергии звука в дБА. Этот уровень измеряет-ся специальными интегрирующими шумомерами или рас-считывается.

Как пример в табл. 14 приведены допустимые уровни звуко-вого давления в октавных полосах частот, уровни звука и экви-валентные уровни звука на рабочих местах в производственных помещениях и на территории промышленных предприятий для широкополосного шума.

Стандарт предписывает зоны с уровнем звука выше 85 дБА обозначать специальными знаками, а работающих в этих зонах снабжать средствами индивидуальной защиты. Стандарт запрещает даже кратковременное прерывание людей в зонах с октавными уровнями звукового давления свыше 135 дБ в лю-бой октавной полосе.

Т а б л и ц а 14

Рабочие места

Уровни звукового давления в дБ в октавных полосах со среднегеомет-рическими частотами, Гц


Уровни звука и эквива-лентные уровни звука, до А

3

25

50

00

000

000

000

000

Постоянные рабочие места и рабочие зоны в производственных помещениях и на территории предприятии

99

92

86

83

80

78

76

74

85

^ 5.6.2 Средства и методы защиты от шума

Защита работающих от шума может осуществляться как коллективными средствами и методами, так и индивидуальны-ми средствами. В первую очередь надо использовать коллек-тивные средства, которые по отношению к источнику шума подразделяются па средства, снижающие шум в источнике его возникновения, и средства, снижающие шум на пути его рас-пространения от источника до защищаемого объекта. Наибо-лее эффективны мероприятия, ведущие к снижению шума в ис-точнике его возникновения. Борьба с шумом после его возникновения обходится дороже и часто является малоэффек-тивно».

Классификация методов и средств коллективной за-щиты от шума в зависимости от способа реализации при-ведена на рис. 17.

Выбор средств снижения шума в источнике его возникнове-ния зависит от происхождения шума.

Основными источниками вибрационного (механического) шума машин и механизмов являются зубчатые передачи, под-шипники, соударяющиеся металлические элементы и т. п. Сни-зить шум зубчатых передач можно повышением точности их обработки и сборки, заменой металлических шестерен. Напри-мер, применяя шестерни из древесного пластика и искусствен-ной кожи в текстильных машинах, удалось снизить шум на 5... 10 дБ 1 .

Даже замена стали в контактирующих деталях на чугун может снизить шум на 3...4 дБ. Имеет значение и форма зубьев. Менее шумными являются конические, косые и ше-вронные зубья.

К снижению шума подшипников приводит тщательность изготовления, плотная посадка на цапфы вала и в гнезда щи-тов без перекосов и защемлений. Снижают шум подшипников и различные смазки и присадки. Меньший шум создают под-шипники скольжения.

Шум при обработке резанием (70... 100 дБ) зависит от мате-риала резца, его формы, заточки, размера стружки и т. п. По-этому снизить шум станков можно применением быстрорежу-щей стали для резца и смазочно-охлаждающих жидкостей, заменой металлических частей станков пластмассовыми или покрытием их вибродемпфирующими материалами.

Шум аэродинамического происхождения на производстве возникает вследствие стационарных или нестационарных про-цессов в газах (истечение сжатых газов из отверстий; пульса-ция давления при движении потоков газа в трубах или при дви-жении в воздухе тел с большой скоростью: горение жидкого или распыленного топлива в форсунках и др.). Таким шумом сопровождается работа вентиляционных систем, систем воз-душного отопления и пневмотранспорта, воздуходувок, ком-прессоров, газотурбинных установок и др. Особенно неприятен шум, возникающий при сбросе (стравливании) из установок сжатых газов. Для снижения аэродинамического шума исполь-зуют специальные шумоглушащие элементы с криволинейны-ми "каналами. Снизить аэродинамический шум можно улучше-нием аэродинамических характеристик машин. Однако этим обычно не достигается необходимый эффект, поэтому прихо-дится дополнительно применять средства звукоизоляции и устанавливать глушители.

Глушители аэродинамического шума бывают абсорб-ционными, реактивными (рефлексными) и комбинированными. В абсорбционных глушителях затухание шума происходит в порах звукопоглощающего материала. Принцип работы ре-активных глушителей основан на эффекте отражения звука в результате образования «волновой пробки» в элементах глу-шителя. Они обычно не содержат звукопоглощающего мате-риала. Реактивные глушители имеют соединенные между со-бой камеры, расширения и сужения, резонансные углубления, экраны и т. п. В комбинированных глушителях происходит как поглощение, так и отражение звука.

Снижения шума машин и установок с помощью средств демпфирования добиваются покрытием их излучающей поверх-ности демпфирующими материалами, имеющими большое внутреннее трение. Существует много различных видов демп-фирующих покрытий. Наиболее распространены жесткие по-крытия из упруго-вязких материалов (мастики, специальные виды войлока, линолеума), наносимых на поверхность наклеи-ванием, напылением и др.

Звукоизоляция является одним из наиболее эффек-тивных и распространенных методов снижения производствен-ного шума на пути его распространения.

С помощью звукоизолирующих преград легко снизить уро-вень шума на 30...40 дБ. Метод основан на отражении звуко-вой волны, падающей на ограждение. Однако звуковая энергия не только отражается от ограждения, но и проникает через не-го, что вызывает колебание ограждения, которое само стано-вится источником шума. Чем больше поверхностная плотность ограждения, тем труднее привести его в колебательное состоя-ние, следовательно, тем выше его звукоизолирующая способ-кость. Поэтому эффективными звукоизолирующими материа-лами являются металлы, бетон, дерево, плотные пластмассы и т. п.

Для оценки звукоизолирующей способности ограждения введено понятие звукопроницаемости τ, под которой понимают отношение звуковой энергии, прошедшей через ограждение, к падающей на него. Величина, обратная звукопроницаемости, называется звукоизоляцией, (дБ), она связана со звукопроницае-мостью следующей зависимостью:

R = 10 lg (1/τ).

Снижение шума методом звукопоглощения основано на переходе энергии звуковых колебаний частиц воздуха в те-плоту вследствие потерь на трение в порах звукопоглощающе-го материала. Чем больше звуковой энергии поглощается, тем меньше ее отражается обратно в помещение. Поэтому для сни-жения шума в помещении проводят его акустическую обработ-ку, нанося звукопоглощающие материалы на внутренние поверхности, а также размещая в помещении штучные звукопоглотители.

Применение средств индивидуальной защиты от шума целесообразно в тех случаях, когда средства кол-лективной защиты и другие средства не обеспечивают сниже-ние шума до допустимых уровней. Средства индивидуальной защиты позволяют снизить уровень воспринимаемого звука на 10...45 дБ, причем наиболее значительное глушение шума наблюдается в области высоких частот, которые наиболее опасны для человека.

Средства индивидуальной защиты от шума подразделяются на противошумные наушники, закрывающие ушную раковину снаружи; противошумные вкладыши, перекрывающие на-ружный слуховой проход или прилегающие к нему; противо-шумные шлемы и каски; противошумные костюмы.

Противошумные вкладыши делают из твердых, эластичных и волокнистых материалов. Они бывают однократного и многократного пользования.

Противошумные шлемы закрывают всю голову, они приме-няются при очень высоких уровнях шума в сочетании с науш-никами, а также противошумными костюмами.

^ 5.6.3 Ультразвук и инфразвук, их действие на организм человека и гигиеническое нормирование

Ультразвук представляет собой механические колебания упру-гой среды, имеющие одинаковую со звуком физическую приро-ду, но отличающиеся более высокой частотой, превышающей принятую верхнюю границу слышимости - свыше 20 кГц, хо-тя при больших интенсивностях (120...145 дБ) слышимыми мо-гут быть и звуки более высокой частоты.

Ультразвук, как и звук, характеризуется ультразвуковым давлением (Па), интенсивностью (Вт/м 2) и частотой колебаний (Гц).

При распространении в различных средах ультразвуковые волны поглощаются, причем тем больше, чем выше их часто-та. Низкочастотный ультразвук довольно хорошо распростра-няется в воздухе, а высокочастотный - практически не распро-страняется. В упругих средах (воде, металле и др.) ультразвук мало поглощается и способен распространяться на большие расстояния, практически не теряя энергии. Поглощение ультра-звука сопровождается нагреванием среды.

Специфической особенностью ультразвука, обусловленное большой частотой и малой длиной волны, является возмож-ность распространения ультразвуковых колебаний напра-вленными пучками, получившими название ультразвуковых лучей. Они создают на относительно небольшой площади очень большое ультразвуковое давление. Это свойство ультразвука обусловило широкое его применение: для очистки деталей, ме-ханической обработки твердых материалов, сварки, пайки,
ускорения химических реакций, дефектоскопии, проверки раз-меров выпускаемых изделий, структурного анализа веществ, гидролокации и др. Нашел применение ультразвук и в медици-не для лечения заболеваний позвоночника, суставов, перифери-ческой нервной системы и т. п.

При длительной работе с низкочастотными ультразвуковыми установками, генерирующими шум и ультразвук, превышающие установленные ПДУ, могут произойти функциональные изменения центральной и периферической нервной
системы, сердечно-сосудистой системы, слухового и вестибу-лярного аппарата и т. п. По сравнению с высокочастотным шумом ультразвук значительно слабее влияет на слуховую функцию, но вызывает более выраженные отклонения от
нормы вестибулярной функции, болевой чувствительности и терморегуляции. То, что ультразвук воздействует на разные органы и системы человека не только через слуховой аппарат, подтверждается неблагоприятным его действием на глухо-немых.

Характеристикой ультразвука, создаваемого колебаниями воздушной среды в рабочей зоне, являются уровни звукового давления (дБ). Допустимые уровни звукового давления на ра-бочих местах нормируют-ся в - октавных полосах частот и не должны превышать сле-дующих значений:


Среднегеометрическая частота

Третьоктавных полос, кГц


Уровни звукового давления, дБ

12,5

80

16,0

90

20,0

100

25,0

105

31,5…100,0

110

Характеристикой ультразвука, передаваемого контактным путем, является пиковое значение виброскорости в частотном диапазоне от 1·10 5 до 1·10 9 Гц или его логарифмические уров-ни (дБ), определяемые по выражению

Где V - пиковое значение виброскорости, м/с; V 0 опорное значение виброскорости, равное 5·10 -6 м/с.

Допустимые уровни ультразвука в золах контакта рук и других частей тела оператора с рабочими органами приборов и установок не должны превышать 110 дБ.

Контроль уровней звукового давления нужно производить после установки оборудования, его ремонта и периодически в процессе эксплуатации не реже одного раза в год.

Для коллективной защиты от воздействия повышенных уров-ней ультразвука можно использовать следующие направления: уменьшение вредного излучения ультразвуковой энергии в ис-точнике ее возникновения; локализацию действия ультразвука конструктивными и планировочными решениями; проведение организационно-профилактических мероприятий.

Для локализации ультразвука обязательным является приме-нение звукоизолирующих кожухов, полукожухов, экранов. Если эти меры не дают положительного эффекта, то ультразвуковые установки нужно размещать в отдельных помещениях и каби-нах, облицованных звукопоглощающими материалами.

Конструктивно-планировочные решения требуют примене-ния дистанционного управления и системы блокировки, отклю-чающей генератор источника ультразвука при нарушении звуко-изоляции.

Контактное воздействие ультразвука исключается автомати-зацией производственных процессов и применением дистанци-онного управления. При особой необходимости используют специальный инструмент с виброизолирующей рукояткой и защитные перчатки.

Организационно-профилактические мероприятия заключа-ются в проведении инструктажа работающих и установлении рациональных режимов труда и отдыха.

Инфразвук представляет собой механические колебания упру-гой среды, имеющие одинаковую с шумом физическую приро-ду, но распространяющиеся с частотами менее 20 Гц. В возду-хе инфразвук мало поглощается и поэтому способен распро-страняться на большие расстояния. Инфразвук характеризуется инфразвуковым давлением (Па), интенсивностью (Вт/м 2), ча-стотой колебаний (Гц). Уровни интенсивности инфразвука и инфразвукового давления выражаются в децибелах (дБ).

Многие явления природы (землетрясения, извержения вул-канов, морские бури) сопровождаются излучением инфразвуковых колебаний. В производственных условиях инфразвук образуется, главным образом, при работе тихоходных крупно-габаритных машин и механизмов (компрессоров, дизельных двигателей, электровозов, вентиляторов, турбин, реактивных двигателей и др.), совершающих вращательное или возвратно-поступательное движение с повторением цикла менее чем 20 раз в секунду (инфразвук механического происхождения). Ин-фразвук аэродинамического происхождения возникает при тур-булентных процессах в потоках газов или жидкостей.

Инфразвук оказывает неблагоприятное воздействие на весь организм человека, в том числе и на орган слуха, понижая слу-ховую чувствительность на всех частотах. Инфразвуковые ко-лебания воспринимаются как физическая нагрузка: возникают утомление, головная боль, головокружения, вестибулярные на-рушения, снижается острота зрения и слуха, нарушается пери-ферическое кровообращение, появляется чувство страха и т. п. Тяжесть воздействия зависит от диапазона частот, уровня зву-кового давления и длительности.

^ Низкочастотные колебания с уровнем инфразвукового давле-ния свыше 150 дБ совершенно не переносятся человеком.

Особенно неблагоприятные последствия вызывают инфразвуковые колебания с частотой 2...15 Гц в связи с возникнове-нием резонансных явлений в организме человека, причем на-иболее опасна частота 7 Гц, так как возможно его совпадение с альфа-ритмом биотоков мозга.

В соответствии с СН 22-74 - 80 уровни инфразвукового да-вления в октавных полосах со среднегеометрическими частота-ми 2, 4, 8 и 16 Гц не должны превышать 105 дБ, а в полосе с частотой 32 Гц-102 дБ.

Борьба с неблагоприятным воздействием инфразвука дол-жна вестись в тех же направлениях, что и борьба с шумом. На-иболее целесообразно уменьшать интенсивность инфразвуковых колебаний на стадии проектирования машин или агрега-тов.

^ 5.6.4 Вибрация, её действие на организм человека и гигиеническое нормирование

В последние десятилетия в связи с внедрением вибрационной техники в различные отрасли народного хозяйства значительно увеличился контингент работников, подвергающихся в процес-се труда воздействию вибрации.

Вибрация - это сложный колебательный процесс, возникаю-щий при периодическом смещении центра тяжести какого-либо тела от положения равновесия, а также при периодическом из-

Анализ производственной вибрации представляет большие трудности, так как колебания машин и другого оборудования не являются простыми гармоническими колебаниями; им свой-ственна апериодичность или квазипериодичность, часто они но-сят импульсный или толчкообразный характер.

Основными параметрами, характеризующими вибрацию, действующую по синусоидальному закону, являются: амплитуда смещения - наибольшее отклонение колеблющейся точки от положения равновесия А , м; колебательная скорость - макси-мальное из значении скорости колеблющейся точки V , м/с; ко-лебательное ускорение - максимальное из значений ускорений колеблющейся точки Q , м/с 2 ; частота f , Гц.

При частоте больше 16...20 Гц вибрация сопровождается шумом.

Человек начинает ощущать вибрацию при колебательной скорости примерно равной 1·10 -4 м/с, а при скорости 1 м/с возникают болевые ощущения.

В зависимости от способа передачи вибрации телу человека различают локальную (местную) вибрацию, передающуюся че-рез руки человека, и общую, передающуюся на тело сидящего или стоящего человека через опорные поверхности тела. В ре-альных условиях часто имеет место сочетание этих вибраций.

Влияние вибрации на человека зависит и от направления ее действия. Поэтому вибрация подразделяется на действующую вдоль осей ортогональной системы координат X , Y , Z (для об-щей вибрации), где Z - вертикальная ось, а X и Y - горизон-тальные оси (рис. 18, а, б); действующую вдоль осей ортого-нальной системы координат Х р , Y Р , Z p (для локальной вибрации), где ось Х р совпадает с осью мест охвата источника вибрации, а ось Z p лежит в плоскости, образованной осью Х р и направлением подачи или приложения силы, или осью пред-плечья (рис. 19, а, б).

Общая вибрация в зависимости от источника ее возникнове-ния может быть трех категорий:


  1. - транспортная вибрация, воздействующая на операторов (водителей) подвижных машин и транспортных средств при их движении по местности, агрофонам и дорогам (в том числе при их строительстве);

  2. - транспортно-технологическая вибрация, воздействую-щая на операторов машин с ограниченным перемещением только по специально подготовленным поверхностям про-изводственных помещений, промышленных площадок и горных выработок (экскаваторов, грузоподъемных кранов, горных машин, путевых машин, бетоноукладчиков и др.);
3 - технологическая вибрация, воздействующая на операто-ров стационарных машин или передающаяся на рабочие места, не имеющие источников вибрации (станки, электрические ма-шины, насосы, вентиляторы, буровые установки и т. п.). В зависимости от характеристики рабочих мест эта категория - под-разделяется на группы

3а, 3б, 3в, 3г. Степень и характер воздействия вибрации на организм человека зависят от вида вибрации, её параметров и направления воздействия.

а - положение стоя, б - по-ложение сидя; ось Z - вер-тикальная, перпендикулярная опорной поверхности; ось X - горизонтальная от спи-ны к груди; ось Y - гори-зонтальная от правого плеча к левому

а - при охвате цилиндрических (и торцовых) поверхностей; б – при охвате сферических поверхностей

Тело человека можно рассматривать как сочета-ние масс с упругими элементами. Весьма опасными являются колебания рабочих мест, имеющие частоту, резонансную с ко-лебаниями отдельных органов или частей тела человека. Для большинства внутренних органов собственные частоты лежат в области 6...9 Гц. Для стоящего на вибрирующей поверхно-сти человека имеется два резонансных пика на частотах 5... 12 и 17...25 Гц, для сидящего - на частотах 4...6 Гц.

В определенных условиях вибрация оказывает благоприят-ное действие на организм человека и применяется в медицине для улучшения функционального состояния нервной системы, ускорения заживления ран, улучшения кровообращения, лече-ния радикулитов и т. п. Однако в производственных условиях длительное воздействие вибрации приводит к различным нару-шениям здоровья человека и в конечном счете - к «вибрацион-ной болезни».

Наиболее распространены заболевания, вызванные ло-кальной вибрацией. При работе с ручными машинами, вибра-ция которых наиболее интенсивна в высокочастотной области спектра (выше 125 Гц), возникают в основном сосудистые рас-стройства, сопровождающиеся спазмом периферических сосу-дов. Локальная вибрация, имеющая широкий частотный спектр, часто с наличием ударов (клепка, срубка, бурение), вы-зывает различную степень сосудистых, нервно-мышечных, костно-суставных и других нарушений.

Общая вибрация оказывает неблагоприятное воздействие на нервную систему, наступают изменения в сердечно-сосудистой системе, вестибулярном аппарате, нарушается обмен веществ. При совместном воздействии общей и местной вибрации (у во-дителей тяжелых машин, экскаваторщиков, бульдозеристов и др.) к поражению нервной системы присоединяются вегетативно-сосудистые, вестибулярные и другие расстройства.

Таким образом, вибрационная болезнь связана в основном с нарушением деятельности различных отделов нервной си-стемы. Способствуют возникновению заболевания такие сопут-ствующие факторы, как охлаждение, большие статические мы-шечные усилия, пониженное атмосферное давление, производ-ственный шум.

Частотным (спектральным) анализом нормируемого пара-метра;

Интегральной оценкой по частоте нормируемого параметра;

Дозой вибрации.

В зависимости от принятого метода оценки стандарт регла-ментирует разные параметры вибрации.

При частотном (спектральном) анализе нормируемыми па-раметрами являются средние квадратичные значения виброско-рости V (и их логарифмические уровни L v) или виброускорения а для локальной вибрации в октавных полосах частот, а для общей вибрации в октавных или 1 / 3 полосах час-тот.

Логарифмические уровни виброскорости L v (дБ) опреде-ляются по выражению

Где v - среднее квадратичное значение виброскорости, м/с.

При использовании метода интегральной оценки вибрации
по частоте нормируемым параметром является корректирован-ное значение контролируемого параметра Ũ (виброскорости или виброускорения), измеряемое с помощью специальных фильтров или вычисляемое по формулам.

Вибрацию, воздействующую на человека, нормируют отдельно для каждого установленного направления, учитывая, кроме того, при общей вибрации - ее категорию, а при ло-кальной - время фактического воздействия.

По своей физической сущности, шум – это звук. С гигиенической точки зрения, шумом является любой нежелательный для человека звук.
Шум может вызывать неприятные ощущения, однако решающую роль в оценке «неприятности» шума играет субъективное отношение человека к этому раздражителю.

Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Область слышимых звуков ограничена двумя кривыми: нижняя кривая определяет порог слышимости, т.е. силу едва слышимых звуков различной частоты, верхняя – порог болевого ощущения, т.е. такую силу звука, при которой нормальное слуховое ощущение переходит в болезненное раздражение органа слуха.

В качестве характеристик постоянного шума на рабочих местах, а также для определения эффективности мероприятий по ограничению его неблагоприятного влияния принимаются уровни звуковых давлений (в дБ) в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 1000; 2000; 4000 и 8000 Гц.

В качестве интегральной (одним числом) характеристики шума на рабочих местах применяется оценка уровня звука в дБА (измеренных по так называемой шкале А шумомера), представляющих собой средневзвешенную величину частотных характеристик звукового давления с учетом биологического действия звуков разных частот на слуховой анализатор.

При гигиенической оценке шумы классифицируют по характеру спектра и по временным характеристикам.

Шум, являясь информационной помехой для высшей нервной деятельности в целом, оказывает неблагоприятное влияние на протекание нервных процессов, увеличивает напряжение физиологических функций в процессе труда, способствует развитию утомления и снижает работоспособность организма.

Однако, кроме специфического действия на органы слуха, шум оказывает и неблагоприятное общебиологическое действие, вызывая сдвиги в различных функциональных системах организма. Так, под влиянием шума возникают вегетативные реакции, обусловливающие нарушение периферического кровообращения за счет сужения капилляров, а также изменение артериального давления (преимущественно повышение). Шум вызывает снижение иммунологической реактивности и общей сопротивляемости организма, что проявляется в повышении уровня заболеваемости с временной утратой трудоспособности.

Для снижения шума применяют различные методы коллективной защиты: уменьшение уровня шума в источнике его возникновения; рациональное размещение оборудования; борьба с шумом на путях его распространения, в том числе изменение направленности излучения шума, использование средств звукоизоляции, звукопоглощение и установка глушителей шума, в том числе акустическая обработка поверхностей помещения.

Наиболее эффективным средством является борьба с шумом в источнике его возникновения. Для уменьшения механического шума необходимо своевременно проводить ремонт оборудования, заменять ударные процессы на безударные, шире использовать принудительное смазывание трущихся поверхностей, применять балансировку вращающихся частей. Снижения аэродинамического шума можно добиться уменьшением скорости газового потока, улучшением аэродинамики конструкции, звукоизоляции и установкой глушителей. Электромагнитные шумы снижают конструктивными изменениями в электрических машинах.

Широкое применение получили методы снижения шума на пути его распространения посредством установки звукоизолирующих и звукопоглощающих преград в виде экранов, перегородок, кожухов, кабин и др. Хорошие звукопоглощающие свойства имеют легкие и пористые материалы (минеральный войлок, стекловата, поролон и т.п.).

Средства защиты от вибрации

Вибрацией называется механическое колебательное движение, заключающееся в перемещении тела как целого. Вибрация в отличие от звука не распространяется в виде волн сжатия/разряжения и передается только при механическом контакте одного тела с другим.

В природе вибрация практически не встречается, но, к сожалению, очень часто возникает в технических устройствах. Кроме того, в технике вибрацию специально используют, например, при вибрационной транспортировке.

Вибрация, воздействующая на человека через опорные поверхности, оказывает влияние на весь организм и называется общей. (Поверхность, на которой человек стоит, сидит или лежит, называется опорной.) Общая вибрация, захватывающая все тело, наблюдается на всех видах транспорта и при работе в непосредственной близости от источника вибрации (промышленного оборудования).

Вибрация, воздействующая не через опорные поверхности, охватывает только часть организма и называется локальной. Практически вся она является вибрацией, передающейся через руки, и возникает там, где вибрационные инструменты или обрабатываемые детали контактируют с руками или пальцами. Локальная вибрация возникает, например, при использовании ручных силовых инструментов, применяемых на производстве. Число лиц, подвергающихся локальной вибрации, составляет несколько десятков миллионов человек.

Особым подвидом общей вибрации является укачивание, связанное с низкочастотными колебаниями тела и некоторыми типами его вращения на транспорте.

Человек реагирует на вибрацию в зависимости от общей продолжительности ее воздействия.

Наибольшее воздействие общей вибрации сказывается на процессах получения входящей информации (в основном зрительной из-за колебаний глазных яблок и головы) и на процессах передачи информации (непрерывный контроль деятельности колеблющихся рук).

Долговременное воздействие весьма интенсивной общей вибрации (например, на трактористов) может нежелательным образом сказываться на позвоночнике и увеличивать риск возникновения изменения позвонков и дисков.

Помимо воздействия на организм как на механическую систему, вибрация оказывает влияние на нормальное течение физиологических процессов. Например, общая вибрация вызывает варикозное расширение вен на ногах, геморрой, ишемическую болезнь сердца и гипертонию.
Чрезмерное воздействие локальной вибрации может вызывать заболевания кровеносных сосудов, нервов, мышц, костей и суставов верхних конечностей, так называемую «виброболезнь».

Для борьбы с вибрацией машин и оборудования и защиты работающих от вибрации используют различные методы. Борьба с вибрацией в источнике ее возникновения связана с установлением причин появления механических колебаний и их устранением. Для снижения вибрации широко используют эффект вибродемпфирования – превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют материалы с большим внутренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты.

Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизоляции в виде виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин.

Виброгашением называется гашение вибрации за счет активных потерь или превращения колебательной энергии в другие ее виды, например, в тепловую, электрическую, электромагнитную. Виброгашение может быть реализовано в случаях, когда конструкция выполнена из материалов с большими внутренними потерями; на ее поверхность нанесены вибропоглощающие материалы; используется контактное трение двух материалов; элементы конструкции соединены сердечниками электромагнитов с замкнутой обмоткой и др.

Наиболее действенным средством защиты человека от вибрации является устранение непосредственного контакта с вибрирующим оборудованием. Осуществляется это путем применения дистанционного управления, промышленных роботов, автоматизации и замены технологических операций.

Снижение неблагоприятного воздействия вибрации ручных механизированных устройств на операторов достигается как путем уменьшения интенсивности вибрации непосредственно в ее источнике (за счет конструктивных усовершенствований), так и средствами внешней виброзащиты, которые представляют собой упругодемпфирующие материалы и устройства, размещенные между источником вибрации и руками оператора.

В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.



2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.