Гидроксиапатит: «жидкая эмаль. Гидроксиапатит - компонент зубной эмали природного происхождения Зубная паста "Президент"

Минерализованные ткани, к которым относятся костная ткань, дентин, клеточный и бесклеточный цемент и эмаль зуба, характери- зуются высоким содержанием минерального компонента, главной составной частью которого являются фосфорнокислые соли кальция.

3.1. ХИМИЧЕСКИЙ СОСТАВ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ

Образование и распад минерального компонента в этих тканях тесно связан с обменом кальция и фосфора в организме. В межклеточном матриксе минерализованных тканей происходит депонирование кальция, который выполняет также структурную функцию. В клетках кальций исполняет роль вторичного посредника в механизмах внутриклеточного переноса сигналов.

Особенностью всех минерализованных тканей, за исключением эмали и бесклеточного цемента, является малое количество клеток с длинными отростками, а большой межклеточный матрикс заполнен минералами. В белках матрикса формируются центры кристаллизации для формирования кристаллов минерального компонента - апатитов. Эмаль и бесклеточный цемент зубов образуются из эктодермы, а остальные минерализованные ткани из стволовых клеток мезодермы. Насыщенность минеральными соединениями зависит от вида твёрдой ткани, топографической локализацией внутри ткани, возраста и экологических условий.

Все минерализованные ткани различаются по содержанию воды, минеральных и органических соединений (табл. 3.1).

В эмали по сравнению с другими твёрдыми тканями определяется наиболее высокая концентрация кальция и фосфатов, и количество этих минералов снижается в направлении от поверхности к эмалеводентинной границе. В дентине, наряду с ионами кальция и фосфатов, определяется достаточно высокая концентрация магния и натрия. Наименьшее количество кальция и фосфатов присутствует в костной ткани и цементе (табл. 3.2).

В состав твёрдых тканей зубов и костей входят соли HPO 4 2- , или PO 4 3- . Ортофосфаты кальция могут быть в форме однозамещен-

Таблица 3.1

Процентное распределение воды, неорганических и органических веществ

в минерализованных тканях

Ткань

Вещества, %

минеральные

органические

вода

Эмаль

Дентин

Цемент

Кость

Таблица 3.2

Химический состав минерализованных тканей

Ткань

Химические элементы, в % от сухой массы

Са 2+

ро 4 3-

Mg 2+

К +

Na +

Cl -

Эмаль

32-39

16-18

0,25-0,56

0,05-0,3

0,25-0,9

0,2-0,3

Дентин

26-28

12-13

0,8-1,0

0,02-0,04

0,6-0,8

0,3-0,5

Цемент

21-24

10-12

0,4-0,7

0,15-0,2

0,6-0,8

0,03-0,08

Кость

22-24

0,01

ных (H 2 PO 4-), двузамещенных (HPO 4 2-) или фосфат ионов (PO 4 3-). Пирофосфаты встречаются только в зубных камнях и костной ткани. В растворах ион пирофосфата оказывает существенный эффект на кристаллизацию некоторых ортофосфатов кальция, что выражается в регуляции величины кристаллов.

Характеристика кристаллов

Большинство фосфорно-кальциевых солей кристаллизуются с образованием кристаллов разной величины и формы в зависимости от входящих элементов (табл. 3.3). Кристаллы присутствуют не только в минерализованных тканях, но и способны образовываться в других тканях в виде патологических образований.

Расположение атомов и молекул в кристалле можно исследовать при помощи рентгеноструктурного анализа кристаллических реше- ток. Как правило, частички располагаются в кристалле симметрично; их называют элементарными ячейками кристалла. Сеточка, образуемая ячейками, называется матрицей кристалла. Имеется 7 разных

Таблица 3.3

Кристаллические образования, присутствующие в различных тканях

В минерализованных тканях животного мира преобладают апатиты. Они имеют общую формулу Ca 10 (PO 4) 6 X 2 , где X представлен анионами фтора или гидроксильной группой (OH -).

Гидроксиапатит (гидроксилапатит) - основной кристалл мине- рализованных тканей; составляет 95-97% в эмали зуба, 70-75% в дентине и 60-70% в костной ткани. Формула гидроксиапатита - Са 10 (PO 4) 6 (ОН) 2 . В этом случае молярное соотношение Са/Р (кальциево-фосфатный коэффициент) равно 1,67. Решётка гидроксиапатита имеет гексагональную структуру (рис. 3.1, А). Гидроксильные группы расположены вдоль гексагональной оси, тогда как фосфатные группы, имеющие наибольшие размеры по сравнению с ионами кальция и гидроксилами, распределяются как равнобедренные треугольники вокруг гексагональной оси. Между кристаллами имеются микропространства, заполненные водой (рис. 3.1, Б). Гидроксиапатиты являются

Рис. 3.1. Гидроксиапатит:

А - гексагональная форма молекулы гидроксиапатита; Б - расположение

кристаллов гидроксиапатита в эмали зуба.

довольно устойчивыми соединениями и имеют очень стабильную ионную решётку, в которой ионы плотно упакованы и удерживаются за счёт электростатических сил. Сила связи прямо пропорциональна величине заряда ионов и обратно пропорциональна квадрату расстояния между ними. Гидроксиапатит электронейтрален. Если в структуре гидроксиапатита содержится 8 ионов кальция, то кристалл приобретает отрицательный заряд. Он может заряжаться и положительно, если количество ионов кальция достигает 12. Такие кристаллы обладают реакционной способностью, возникает поверхностная электро- химическая неуравновешенность и они становятся неустойчивыми.

Гидроксиапатиты легко обмениваются с окружающей средой, в результате чего в их составе могут появляться другие ионы (табл. 3.4). Наиболее часто встречаются следующие варианты обмена ионов: Са 2+ замещается катионами Sr 2+ , Ba 2+ , Mo 2+ , реже Mg 2+ , Pb 2+ .

Катионы Ca 2+ поверхностного слоя кристаллов, могут на короткое

время замещаться катионами К + , Na + .

PO 4 3- обменивается с НРО 4 2- , СО 3 2- .

ОН - замещается анионами галогенов Cl - , F - , I - , Br - .

Элементы кристаллической решётки апатитов могут обмениваться с ионами раствора, окружающего кристалл и изменяться за счёт ионов, находящихся в этом растворе. В живых системах это свойство апатитов делает их высокочувствительными к ионному составу крови и межклеточной жидкости. В свою очередь, ионный состав крови и межклеточной жидкости зависит от характера пищи и потребляемой воды. Сам процесс обмена элементов кристаллической решётки протекает в несколько этапов с разной скоростью.

Обмен ионов в кристаллической решётке гидроксиапатита изменяет его свойства, в том числе прочность, и существенно влияет на размеры кристаллов (рис. 3.2).

Некоторые ионы (К + , Cl -) в течение несколькольких минут путём диффузии из окружающей биологической жидкости заходят в гидрат-

Таблица 3.4

Замещаемые и замещающие ионы и молекулы в составе апатитов

Замещаемые ионы

Замещающие ионы

РО 4 3-

AsO 3 2- , НРО 4 2- , СО 2

Са 2+

Sr 2+ , Ba 2+ , Pb 2+ , Na + , K + , Mg 2+ , H 2 O

ОН -

F - , Cl - , Br - , I - , H 2 O

2ОН

СO 3 2- , O 2 -

Рис. 3.2. Размеры кристаллов различных апатитов .

ный слой гидроксиапатита, а затем также легко его покидают. Другие ионы (Na + , F -) легко проникают в гидратную оболочку и, не задерживаясь, встраиваются в поверхностные слои криста лла. Проникновение ионов Са 2+ , PO 4 3- , СО 3 2- , Sr 2+ , F - в поверхность кристаллов гидроксиапатита из гидратного слоя происходит очень медленно, в течение нескольких часов. Только немногие ионы: Са 2+ , PO 4 3- , СО 3 2- , Sr 2+ , F - встраиваются вглубь ионной решётки. Это может продолжаться от нескольких дней до нескольких месяцев. Преимущественным фак- тором, определяющим возможность замены, является размер атома. Схожесть в зарядах имеет второстепенное значение. Такой принцип замены носит название изоморфного замещения. Тем не менее, в ходе такого замещения поддерживается общее распределение зарядов по

принципу: Сa 10 х(HPO 4)х(PO 4) 6 х(OH) 2 х, где 0<х<1. Потеря Ca 2+ частич- -+ но компенсируется потерей OH и частично H , присоединённых к

фосфату.

В кислой среде ионы кальция способны замещаться протонами по

схеме:

Это замещение несовершенно, поскольку протоны во много раз меньше катиона кальция.

Такое замещение приводит к разрушению кристалла гидроксиапатита в кислой среде.

Фторапатиты Ca 10 (PO 4) 6 F 2 наиболее стабильные из всех апатитов. Они широко распространены в природе и прежде всего как почвенные минералы. Кристаллы фторапатита имеют гексагональную форму. В водной среде реакция взаимодействия фтора с фосфатами кальция зависит от концентрации фтора. Если она сравнительно невысока (до 500 мг/л), то образуются кристаллы фторапатита:

Фтор резко уменьшает растворимость гидроксиапатитов в кислой среде.

При высоких концентрациях фтора (>2 г/л) кристаллы не образуются:

Заболевание, развивающееся при избыточной концентрации фтора в воде и почве, зубах и костях в период формирования костного скелета и зубных зачатков назывется флюорозом.

Карбонатный апатит содержит в своем составе несколько процентов карбоната или гидрокарбоната. Процесс минерализации биологических апатитов в значительной степени определяется присутствием и локализацией карбонатных ионов в кристаллической решётке. Карбонатные радикалы СО 3 2- могут замещать как ОН - (А-узел), так и РО 4 3- (В-узел) в решётке гидроксиапатита. Например, около 4% апатита эмали зуба составляют карбонатные группы, которые замещают как фосфатные, так и гидроксильные ионы в пропорции 9:1 соответственно. Подобная ситуация характерна и для других гидроксиапатитов естественного происхождения. Условно химическая формула карбонированного гидроксиапатита может быть записана в виде Ca 10 [(PO 4) 6 -x(CO 3)x][(OH) 2 -2y(CO 3)y], где х характеризует В-замещение, а у - А-замещение. Для гидроксиапатита эмали зуба x =0,039, y =0,001. Карбонат уменьшает кристалличность апатита и делает его

более аморфным и хрупким. Чаще всего фосфат-анионы апатитов замещаются ионами НСО 3- по схеме:

Интенсивность замены зависит от числа образующихся гидрокарбонатов. В организме постоянно происходят реакции декарбоксилирования, и образующиеся молекулы СО 2 взаимодействуют с молекулами Н 2 O. Анионы НСО 3 - образуются в реакции, катализируемой карбоангидразой, и замещают фосфат-анионы.

Карбонатные апатиты более характерны для костной ткани. В тканях зуба они образуются в непосредственной близости от эма- лево-дентинной границы за счёт продукции анионов НСО 3 - одонтобластами. Возможно образование молекул НСО 3- за счёт активного метаболизма аэробной микрофлоры зубного налёта. Образующееся количество НСО 3- в этих участках может превышать PO 4 3- , что способствует образованию карбонатного апатита в поверхностных слоях эмали. Накопление карбонатапатита свыше 3-4% от общей массы гидроксиапатита повышает кариесвосприимчивость эмали. С возрастом количество карбонатных апатитов увеличивается.

Стронциевый апатит . В кристаллической решётке апатитов Sr 2+ может вытеснять или заменять вакантные места для Ca 2+ .

Это приводит к нарушению структуры кристаллов. В Забайкалье, вдоль берегов небольшой реки Уров, описано заболевание, получившее название «уровская» болезнь. Оно сопровождается поражением костного скелета, уменьшением конечностей у людей и у животных. В местности, загрязненной радионуклидами, неблагоприятное значение стронциевого апатита для организма человека связано с возможностью депонирования радиоактивного стронция.

Магниевый апатит образуется при замещении Ca 2+ на ионы Mg 2+ .

Органические вещества минерализованных тканей в основном представлены белками, а также углеводами и липидами.

3.2. БЕЛКИ МЕЖКЛЕТОЧНОГО МАТРИКСА

МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ МЕЗЕНХИМНОГО

ПРОИСХОЖДЕНИЯ

Белки минерализованных тканей составляют основу для прикрепления минералов и определяют процессы минерализации. Особенностью всех белков минерализованных тканей является наличие остатков фосфосерина, глутамата и аспартата, которые способны связывать Ca 2+ и таким образом участвовать в образовании кристаллов апатита на начальном этапе. Второй особенностью является присутствие углеводов и последовательности аминокислотных остатков арг-гли-асп в первичной структуре белков, что обеспечивает их связывание с клетками или с белками, формирующими межклеточный матрикс.

Часть белков встречается в межклеточном матриксе большинства минерализованных тканей. Это белки адгезии, кальций-связывающие белки, протеолитические ферменты, факторы роста. Другие белки со специальными свойствами присущи только данной ткани и связаны с определёнными процессами, характерными для этого типа ткани.

Остеонектин - гликопротеин, присутствующий в большом количестве в минерализованной ткани. Белок синтезируется остеобластами, фибробластами, одонтобластами и в небольшом количестве хондроцитами и эндотелиальными клетками. В N-концевой области остеонектина располагается большое количество отрицательно заряженных аминокислот. В сформированной α-спирали на N-концевой области имеется до 12 участков связывания Ca 2+ , входящего в состав гидроксиапатита. Через углеводный компонент остеонектин связывается с коллагеном I типа. Таким образом, остеонектин обеспечивает взаимодействие компонентов матрикса. Он также регулирует пролиферацию клеток и принимает участие во многих процессах на этапе развития и созревания минерализованных тканей.

Остеопонтин - белок с мол. массой ~32 000 кДа, содержит несколько повторов, богатых аспарагиновой кислотой, которые придают остеопонтину способность связываться с кристаллами гидроксиапатита.

В средней части молекулы содержится последовательность RGD (аргглу-асп), ответственная за прикрепление клеток. Этот белок играет ключевую роль в построении минерализованного матрикса, взаимодействии клеток и матрикса и транспорте неорганических ионов.

Костный сиалопротеин - специфичный белок минерализованных тканей с мол. массой ~70 кДа, на 50% состоящий из углеводов (из них 12% составляет сиаловая кислота). Большинство углеводов представлены О-связанными олигосахаридами, которые содержатся в N-кон- цевой области белка. Этот белок подвергается в реакциях сульфатирования тирозина различным модификациям. В составе костного сиалопротеина определяется до 30% фосфорилированных остатков серина и повторяющихся последовательностей глутаминовой кислоты, которые участвуют в связывании Ca 2+ . Костный сиалопротеин выявлен в костях, дентине, цементе, гипертрофированных хондроци- тах и остеокластах. Данный белок отвечает за прикрепление клеток и участвует в минерализации матрикса.

Костный кислый гликопротеин-75 - белок с мол. массой 75 кДа, по своему составу на 30% гомологичный остеопонтину. Присутствие большого количества остатков глутаминовой (30%), фосфорной (8%) и сиаловых (7%) кислот обеспечивает его способность связывать Ca 2+ . Белок обнаружен в костной ткани, дентине и хрящевой ростовой пластинке и не определяется в неминерализованных тканях. Костный кислый гликопротеин-75 ингибирует процессы резорбции в минерализованных тканях.

Gla-белки . Отличительной особенностью семейства Gla-белков является присутствие в их первичной структуре остатков 7-кар- боксиглутаминовой кислоты. Они различаются по мол. массе и количеству остатков 7-карбоксиглутаминовой кислоты. Образование 7-карбоксиглутаминовой кислоты происходит в процессе посттрансляционной модификации в витамин К-зависимой реакции карбоксилирования остатков глутаминовой кислоты. Наличие дополнительной карбоксильной группы в 7-карбоксиглутаминовой кислоте обеспечивает лёгкое связывание и отдачу ионов Ca 2+ .

К Gla-белкам относят остеокальцин и матриксный Gla-белок.

Остеокальцин (костный глутаминовый белок) - белок с мол. массой 6 кДа. Состоит из 49 аминокислотных остатков, из которых 3 представлены 7-карбоксиглутаминовой кислотой. Белок присутствует в костной ткани и дентине зуба. Синтезируется в виде предшественника (рис. 3.3).

Рис. 3.3. Образование активной формы остеокальцина.

После отщепления сигнального пептида образуется про-остеокальцин, который далее подвергается посттрансляционной модификации. Вначале остатки глутаминовой кислоты окисляются, а затем происходит присоединение молекул СО 2 при участии витамин К-зависимой глутаматкарбоксилазы (рис. 3.4). Активность этого фермента снижается в присутствии варфарина - антагониста витамина К.

Нативный остеокальцин связывает Ca 2+ , идущие на образование кристаллов гидроксиапатита. В плазме крови содержится как нативный остеокальцин, так и его фрагменты.

Матриксный Gla-белок содержит 5 остатков 7-карбоксиглутами- новой кислоты и способен связываться с гидроксиапатитом. Белок обнаружен в пульпе зуба, легких, сердце, почках, хряще и появляется на ранних стадиях развития костной ткани.

Рис. 3.4. Посттрансляционная модификация остатков глутаминовой кислоты в молекуле про-остеокальцина. А - гидроксилирование глутаминовой кислоты; Б - связывание ионов кальция 7-карбоксиглутаминовой кислотой.

Протеин S содержит остатки 7-карбоксиглутаминовой кислоты и синтезируется главным образом в печени. Определяется в костной ткани, а при его дефиците обнаруживают изменения костного скелета.

Фтор - это один из важнейших элементов, отвечающих за формирование эмали и поддержание здоровья зубов. Тем не менее в некоторых регионах в питьевой воде концентрация данного вещества достаточно высокая. Таким образом, для проживающих там людей становится актуальным список зубных паст без фтора.

Особенности состава

Список зубных паст без фтора постоянно расширяется. В последнее время наметилась тенденция к использованию натуральных средств гигиены. Что касается фтора, то его избыток опасен для здоровья, а потому в ряде регионов (Урал, Сибирь, Тамбовская, Тверская и Московская области) пасты без этого компонента особенно популярны. Тем не менее не достаточно обратить внимание на пометку Without Fluoride. Важно внимательно изучить состав.

Зубная паста в обязательном порядке должна содержать кальций. Он отвечает за укрепление эмали. Кроме того, данное вещество связывает избыток фтора, который содержится в проточной воде. Он может присутствовать в составе пасты в виде одного из следующих соединений:

  • глицерофосфат кальция;
  • цитрат кальция;
  • гидроксиапатит кальция;
  • пантотенат кальция;
  • лактат кальция.

Пристального внимания к составу требуют зубные пасты без фтора. Названия средств говорят меньше, чем компоненты, из которых они состоят. Так, если вы хотите на 100% знать, что в пасте отсутствует фтор, убедитесь, что в составе нет следующих соединений:

  • монофторофосфат;
  • фторид алюминия;
  • фторид натрия;
  • аминофторид (также может встречаться под названием олафлур);
  • фторид олова.

Зубная паста "Президент"

Стремление поддерживать здоровье ротовой полости заставляет потребителей искать самые лучшие гигиенические средства. Так, зубная паста "Президент" является одной из лучших на рынке. Ее производит итальянский концерн Betafarma SPA. Это достаточно дорогое средство, цена которого стартует от 200 рублей за 75 мл. Активными веществами в составе данного средства являются следующие:

  • кальция пантотенат, лактат, глицерофосфат;
  • папаин;
  • ксилит.

Стоит отметить, что это отличная зубная паста с кальцием без фтора. Первый компонент содержится в ней сразу в трех соединениях. При этом они отличаются легкой усваиваемостью. Что касается папаина, стоит отметить, что это фермент, растворяющий белок. Его основное предназначение - удаление зубного налета. Ксилит, в свою очередь, препятствует его дальнейшему образованию.

Тем не менее есть у пасты и некоторые недостатки. Так, стоматологов смущает наличие в составе калиевой соли. Этот компонент борется с чувствительностью зубной эмали. Тем не менее его частое использование противопоказано, ведь снижение чувствительности нервных окончаний может маскировать симптомы кариеса и прочих проблем.

Паста "Президент" для детей

На рынке можно встретить зубные пасты без фтора, названия которых свидетельствуют о том, что они предназначены для детей. Так, итальянский концерн выпускает "Президент Baby". Она отличается низкой абразивностью и приятным малиновым вкусом. Глицерофосфат кальция отлично укрепляет эмаль молочных зубов. Ксилитол отвечает за нейтрализацию кислот, препятствуя образованию кариеса. А благодаря тому, что в состав пасты нет СЛС, ПЭГ, парабенов и прочих вредных веществ, можно не переживать о вреде для здоровья, если ребенок случайно проглотит ее.

Зубная паста "Сплат"

Ряд отечественных производителей выпускает средства для ухода за полостью рта без фтора. Так, особого внимания заслуживает зубная паста "Сплат". Из средней ценовой категории самым популярным продуктом является "Биокальций", цена которой стартует от 120 рублей. В состав пасты входит гидроксиапатит, полидон, лактат кальция и папаин. Эти вещества эффективно борются с налетом и активно укрепляют зубную эмаль.

Эффективность пасты "Биокальций" во многом обусловлена наличием в ее составе гидроксипатита. Его структура состоит из мельчайших частиц, которые обладают хорошими проникающими способностями. Тем не менее список зубных паст без фтора от компании "Сплат" на этом не заканчивается.

Еще одним популярным продуктом отечественного производства является "Максимум". Помимо составляющих, присутствующих в предыдущем средстве, здесь также есть цитрат цинка и комплекс ферментов. Эти компоненты дарят ротовой полости длительную свежесть и блокируют размножение бактерий, вызывающих неприятный запах.

Паста "Сплат" для детей

Большой популярностью пользуется детская зубная паста без фтора "Сплат Juicy Set". Учитывая ее эффективность в плане укрепления эмали, она рекомендована также взрослым. Секрет данного средства состоит в синтетическом гидроксиапатите, который является наиболее легкоусваиваемым соединением кальция. Он действенно восстанавливает эмаль, делая ее более крепкой. также стоит отметить наличие в составе ферментов, на которые возложена функция повышения иммунитета полости рта. таким образом, снижается вероятность возникновения стоматита и воспалительных процессов.

Также поклонникам продукции данного производителя будет предложено попробовать зубную пасту "Сплат Junior", которая предназначена для малышей до 4 лет. Детям непременно понравится мягкий сливочный вкус с нотками ванили, а вот родителям стоит обратить внимание на состав. Так, ферментный комплекс препятствует развитию воспалительных процессов в ротовой полости ребенка. Гель алоэ помогает снять неприятные симптомы во время прорезания зубов. Приятным моментом является наличие в комплекте силиконовой щетки, которая надевается на палец.

Тем не менее вызывает некоторое недоразумение такой компонент, как кальцис. Учитывая, что такого соединения не существует, можно говорить о том, что это не более, чем коммерческое название одного из распространенных веществ. При этом, не зная, какое именно соединение использовано в пасте, нельзя с точностью сказать, как оно влияет на эмаль.

Паста без фтора "Рокс"

Зубная паста "Рокс" - это еще одно достижение отечественной промышленности. Цена данного средства - более 200 рублей. Изучив состав, стоит выделить такие активные вещества, как глицерофосфат кальция, бромелаин и ксилит. так, последний компонент является незаменимым в профилактике кариеса. Он угнетает рост микрофлоры и нейтрализует кислоты. Бромелаин отвечает за расщепление налета. Ну и, конечно же, нельзя не сказать об огромном разнообразии вкусов пасты.

Несмотря на свои преимущества, зубная паста "Рокс" удостоилась также критических замечаний от стоматологов. Основные претензии выдвигаются к ее низкой абразивности. При этом ее степень на упаковке производителем не указана. Таким образом, не обеспечивается достаточное очищение поверхности зуба. А потому можно судить о том, что цена продукта завышена.

Паста "Рокс" для детей

Рассматривая лучшие зубные пасты без фтора, нельзя пройти мимо такого продукта, как "Рокс PRO Baby". Средство предназначено для малышей до 3 лет. Именно такими возрастными рамками обусловлена низкая абразивность пасты. Конечно же, стоит отметить отсутствие любых вредных веществ, включая СЛС, парабены, красители и антисептики. Таким образом, она безопасна в случае проглатывания. Глицерофосфат кальция активно питает эмаль, а ксилитол препятствует раннему образованию кариеса.

Для детей постарше (от 3 до 7 лет) выпускается паста "Рокс kids". Ее активные компоненты такие же, как и в предыдущем случае. Тем не менее абразивность на порядок выше. Также в составе присутствуют антисептики. Это отличный вариант для подготовки к формированию коренных зубов.

Зубная паста "Асепта"

В список зубных паст без фтора входит еще одна отечественная разработка "Асепта"стоимостью около 130 рублей. Основными компонентами ее состава являются калия цитрат, гидроксиапатит и папаин. Данным продуктом рекомендуется пользоваться только в том случае, если для вас актуальна проблема чувствительности зубов. В противном случае имеется риск замаскировать симптомы кариеса, который можно было бы вылечить на ранней стадии.

Паста "Новый жемчуг"

Зубная паста "Новый жемчуг" относится к бюджетному сегменту. Стоимость ее стартует от 30 рублей (зависит от объема тюбика). Главное активное вещество - это цитрат кальция. Данный элемент достаточно быстро высвобождает ионы, что способствует их скорейшему проникновению в эмаль. Тем не менее данное средство ничем более не примечательно. Это и неудивительно, учитывая низкую стоимость такого отечественного продукта, как зубная паста "Новый жемчуг".

Паста без фтора "Парадонтакс"

Зубная паста "Парадонтакс" выгодно отличается от других продуктов тем, что значительная доля в ее составе приходится на растительные компоненты. При этом растительный комплекс зарекомендовал себя настолько хорошо, что остается неизменным вот уже 40 лет. Так, из натуральных компонентов стоит выделить следующие:

  • эхинацея - убивает бактерии, снимает воспаление, а также отвечает за формирование иммунитета ротовой полости;
  • мирра - обеспечивает профилактику заболеваний десен и предотвращает их кровоточивость;
  • ромашка - способствует снижению чувствительности, а также угнетает воспалительные процессы;
  • ратания - тонизирует ткани десен, делая их более эластичными и устойчивыми к повреждениям;
  • мята - обеспечивает свежесть дыхания, снимает воспаления, ослабляет болевые ощущения;
  • шалфей - убивает микробы и укрепляет эмаль.

Зубная паста "Парадонтакс" отличается специфическим вкусом, который обусловлен отсутствием в составе любых ароматизаторов и подсластителей. таким образом, при чистке зубов ощущается солоноватый привкус, который поначалу может показаться неприятным. Паста не предназначена для постоянного использования, так как вызывает привыкание.

Целесообразно ли применение пасты без фтора?

Несмотря на то что фтор незаменим и полезен для здоровья зубов, его избыток может привести к обратному эффекту. Так, у детей нередко возникает такая проблема, как флюороз. Он проявляется в виде белых или темных пятен на зубах, а также неровностях эмали. Для взрослых эта проблема неактуальна. Тем не менее научно доказано, что избыток фтора в организме вреден для всех его систем (а особенно, для щитовидной железы).

Таким образом, если в питьевой воде вашего региона повышенная концентрация данного вещества, зубная паста должна быть соответствующей (в том случае, если вы не пользуетесь фильтром). Тем не менее используя пасту без фтора не по необходимости, а из-за установившейся тенденции, вы рискуете нанести непоправимый вред зубной эмали, который заключается в следующем:

  • разрушение будет происходить на 40 % быстрее;
  • образование зубного налета и камня;
  • неприятный запах изо рта.

Польза фтора

Если в вашем регионе нейтральный химический состав питьевой воды, или же вы пользуетесь фильтром, непременно используйте пасту с фтором. Это вещество обладает такими полезными свойствами:

  • Фтор укрепляет эмаль, делая ее более устойчивой к вредному воздействию кислот. Это связано с тем, что проникая в ткань зуба, он образует соединение фторапатит. Оно является наиболее устойчивым к кариесогенным микроорганизмам.
  • Фтор - это сильнейший антисептик. Он угнетает процесс размножения бактерий и микробов в ротовой полости. Таким образом, зубной налет будет образовываться значительно медленнее. Как следствие, свежесть дыхания будет сохраняться намного дольше.
  • Фтор принимает активное участие в процессе формирования коренных зубов. таким образом, детям после 5 лет просто необходимо, так или иначе, насыщать зубную эмаль данным веществом.
  • Фтор задерживает кальций в костной ткани. Таким образом, зубная эмаль становится более прочной и менее подверженной кариозным разрушениям.

Заключение

На полках магазинов можно встретить множество зубных паст с пометкой "Безопасный состав" или "Без фтора". В первом случае речь идет о маркетинговом ходе, а во втором - о нормативных требованиях МОЗ. Химический состав питьевой воды в некоторых регионах вынуждает к тому, чтобы скорректировать формулу гигиенических средств. Тем не менее, покупая зубную пасту без фтора, вы должны быть уверены, что для вашего здоровья он действительно представляет опасность. В противном случае вы лишаете свою зубную эмаль необходимого питания и защиты.

Source: www.syl.ru

Статья на конкурс «био/мол/текст»: Заболевания, связанные с повышенной скоростью деградации костной ткани у пожилых людей, все острее ощущаются населением. Во многом это связано с увеличением продолжительности жизни вообще и состариванием так называемого «золотого миллиарда». Новые материалы на основе фосфатов кальция, пригодные для имплантации больным остеопорозом, могут частично решить эту проблему.

Современная наука ставит одной из главных своих целей продление длительности человеческой жизни. Разрабатываются новые методы лечения заболеваний, облегчается жизнь стариков, многие болезни, считавшиеся неизлечимыми ранее, практически полностью побеждены человечеством. Однако некоторые возрастные изменения заложены в организм генетически, и обычными методами с ними бороться практически невозможно.

Заболевания костной ткани занимают одну из первых строчек в рейтинге наиболее часто встречающихся у пожилых людей проблем. С возрастом нарастает потеря массы кости. Особенно от этого страдают женщины - из-за более активного вымывания из организма катионов кальция, служащего основой нашего скелета. Потеря массы костной ткани может достигать 40% у женщин старше 70 лет !

Это заболевание называется остеопорозом . Пораженные им кости становятся хрупкими, с трудом справляясь с возложенной на них нагрузкой. В случае перелома срастаться такая кость будет значительно дольше, чем здоровая. Как уже упоминалось выше, главной причиной таких изменений является постепенное вымывание кальция из организма. На протяжении всей жизни у нас в организме происходят два равновесных процесса: непрерывное образование новой костной ткани и резорбция (растворение) старой. К старости равновесие смещается в сторону резорбции, и новая ткань просто не успевает занять место растворенной. А избыток катионов кальция, являющегося основным продуктом этого процесса, выводится из организма естественным путем.

Что же представляет собой человеческая кость? На рисунке 1 схематически изображено строение кости человека. Основа состоит из композита (материала, составленного из других материалов и обладающего свойствами, отличными от свойств «родителей»), представляющего собой кристаллы нестехиометрического гидроксилапатита с химической формулой:

Ca 10−x−y/2 (HPO 4) x (CO 3) y (PO 4) 6−x−y (OH) 2−x ,

Таким образом, полная замена кости на искусственный материал нежелательна. Наиболее предпочтительным путем к регенерации костной ткани на сегодняшний день стала замена поврежденной части ткани на биоактивный протез, который срастется с окружающими тканями, затем ускорит естественную регенерацию и постепенно растворится без следа, оставив на костном дефекте новую ткань.

Рисунок 2. Индивидуальный протез фрагмента нижней челюсти для больного саркомой нижней челюсти. Протез изготовлен из полимера и гидроксилапатита.

Традиционно в ортопедии для этих целей применяется гидроксилапатит . Стехиометрически гидроксилапатит (далее для краткости мы будем называть его ГАП) наиболее приближен по составу к минеральной составляющей кости (по сравнению с другими фосфатами кальция). Его формула:

Что собой представляет гидроксилапатит?

Долгое время считалось, что гидроксилапатит Ca 10 (PO 4) 6 (OH) 2 - идеальный в плане биосовместимости материал для восстановления поврежденных костей и зубов. Первая документированная попытка использовать ГАП в качестве остеозамещающего материала относится к 1920-м годам. Однако успешное применение ГАП в указанных целях совершилось только через 60 лет. Гидроксилапатит прекрасно совместим с мускульной тканью и кожным покровом; после имплантации он может напрямую срастаться с костной тканью в организме. Высокая биосовместимость гидроксилапатита объясняется кристаллохимическим подобием искусственного материала костному «минералу» позвоночных.

Название минерала происходит от греческого «апатао» - обманываю, поскольку красиво окрашенные природные разновидности апатитов часто путали с бериллами и турмалином. Несмотря на очень широкий спектр окраски природных апатитов, вызванных различными примесями, низкая твердость (он является эталоном значения 5 по 10-балльной шкале Мооса) не позволяет рассматривать его как полудрагоценный поделочный камень.

Известно, что костный минерал содержит в заметном количестве (~8% по массе) карбонат-ионы; существует также природный минерал сходного состава - даллит. Считается, что карбонат-ионы могут занимать две разные позиции в структуре ГАП, замещая гидроксил и/или фосфат-ионы с образованием карбонатгидроксилапатита (КГАП) А- и Б-типа, соответственно. Апатит биологического происхождения относится к Б-типу. Замещение фосфат-ионов карбонат-ионами приводит к уменьшению размеров кристаллов и степени кристалличности ГАП, а это сильно затрудняет исследование природных биоминералов. Увеличение доли карбонат-ионов в составе гидроксилапатита вызывает закономерные изменения в равновесной форме кристалла. Игольчатые кристаллы «сплющиваются» до пластин, которые очень похожи на кристаллиты существующего в организме апатита . Таким образом, внесением в синтезируемый минерал небольшой доли карбонат-ионов можно получить материал, аналогичный биогенному и по химическому составу, и геометрически.

Важной характеристикой ГАП является стехиометрия его состава, которую принято выражать соотношением Ca/P. Переменный состав вызван тем, что при синтезе ГАП из раствора нельзя защититься от ионов H 3 O + и HPO 4 2 − , которые могут замещать соответственно ионы Са 2+ и РО 4 3 − в кристаллической структуре гидроксилапатита.

Как используется гидроксилапатит?

Существуют различные методы синтеза гидроксилапатита. Их можно условно разделить на высоко- и низкотемпературные. Высокотемпературные методы не представляют для нас большого интереса, так как полученные таким образом материалы практически не биоактивны. Низкотемпературные методы можно разделить на две большие группы: гидролиз (в том числе так называемые гидротермальные методы синтеза) и осаждение из раствора . Интересен так же комбинированный метод так называемого золь–гель синтеза . В нем сухой остаток геля подвергается разложению при относительно невысокой температуре 400–700 °С (по сравнению с высокотемпературным синтезом). Материалы, полученные таким образом, представляют собой твердую, пористую керамику, по химическому составу и физическим свойствам напоминающую минерал кости.

Как реагирует организм на кальций-фосфатную керамику?

Биоактивность - комплексная характеристика совместимых с организмом материалов, учитывающая, помимо воздействия на биологические процессы роста и дифференциации клеток, также:

  • скорость растворения материала в средах, создаваемых определенными группами клеток (биорезорбируемость);
  • скорость осаждения материала из межтканевой жидкости на поверхность материала.

Среди требований, которые предъявляются к биоактивным материалам, применяемым в медицинской практике для восстановления целостности костной ткани, на первом месте стоят относительно высокая скорость растворения (порядка десятков мкм в год) - так называемая биорезорбируемость . Активную роль в биохимических реакциях, протекающих на границе раздела кость/имплантат с участием клеток специфических для процесса остеосинтеза, играет поверхность. Говоря о скорости резорбции материала, находящегося в межтканевой жидкости, принято сравнивать новые материалы с уже используемыми в медицине - керамикой на основе гидроксилапатита или β-трикальцийфосфата. Крупнокристаллическая керамика на основе ГАП резорбируется медленно, так что включения искусственного материала можно обнаружить в кости и через много лет. Керамика, полученная с использованием β-Ca 3 (PO 4) 2 , растворяется столь быстро, что растущая кость не успевает заполнить образующиеся полости. Скорость растворения материала зависит от множества факторов: площади поверхности, строения, состава, дефектности материала. Эти характеристики определяют отклик организма на инородный имплантат. Биоактивные материалы характеризуются быстрым срастанием с костной тканью через образование промежуточного слоя ГАП, образующегося двумя возможными путями:

  1. Растворение фосфата кальция - осаждение гидроксилапатита.
  2. Осаждение ГАП из пересыщенного раствора в тканевой жидкости.

Важная процедура оценки биоактивности подразумевает тестирование in vivo . Это дорого и долго, а также сопряжено с риском. Однако ведется активная разработка методик, позволяющих уже на раннем этапе доклинических испытаний ранжировать материалы по степени биоактивности в ходе относительно простых экспериментов in vitro , моделирующих процессы в организме человека - растворение материала и осаждение ГАП на поверхности материала из растворов, подобных жидкостям организма.

Исследование биоактивности материалов проводят с использованием раствора, имитирующего ионный состав межтканевой жидкости человека. Компактные образцы исследуемого материала помещают в раствор на несколько суток при 37 °С. Процесс осаждения карбонатгидроксилапатита из модельного раствора на поверхность материала контролируют методами рентгенофазового анализа, ИК-спектроскопии и растровой электронной микроскопии.

Существует необходимость регулировать биорезорбируемость искусственных материалов, в зависимости от их назначения. Такая возможность существует благодаря различию свойств материалов с разным составом. Чтобы сделать образец более резорбируемым, нужно увеличить долю карбонат- и силикат-ионов в кристаллической решетке материала.

Рисунок 3. Ажурный слой частично резорбированной керамики. Снимок со сканирующего электронного микроскопа. Здесь изображен фрагмент материала, подвергнутый растворению в модельном растворе in vitro . Справа можно увидеть, каким был материал до начала резорбции.

Наилучшую биоактивность в таких исследованиях проявляет кремнийсодержащий материал. На его поверхности образуются силанольные (-SiOH) группы, активно участвуя в минерализации внешнего слоя имплантата. Такой материал интенсивно обменивается ионами с раствором: силанольные группы прочно связывают ионы кальция, способствуя формированию слоя аморфного фосфата кальция на поверхности, расслоение и кристаллизация которого приводит к образованию ажурного слоя, состоящего из частиц ГАП размером ~10 нм (рис. 3). Различия в толщине такого слоя могут служить мерой биоактивности материала: чем он толще, тем проще кость будет встраивать этот материал в свою структуру.

Еще одним из важнейших свойств современных имплантационных материалов является остеоиндуктивность - способность поддерживать жизнедеятельность остеобластов и стимулировать эктопическое (вне кости) образование костной ткани de novo . Это важнейшее свойство для искусственных имплантов. Дело в том, что для инициации костеобразования вокруг импланта необходимо микроокружение частицами живой кости. Вновь образующаяся кость постепенно срастается с окружающими имплантированными частицами, «перескакивая» с одной на другую.

Считается, что наиболее активным с точки зрения остеосинтеза является аморфная модификация гидроксилапатита. Однако в достаточной степени кристалличный ГАП с размерами кристаллитов, приближающимися к размерам кристалла в костной ткани (20–40 нм 3), может показывать результаты на порядок выше аморфных цементов, использующихся в настоящее время .

Биоинертные материалы никак не влияют на процесс остеосинтеза. На поверхности изготовленных из них имплантатов происходит образование фиброзной ткани, препятствующей образованию связи имплантата с костью. Существует значительная вероятность отторжения таких материалов организмом, часто сопровождающегося воспалительными процессами. Тем не менее, полностью отказаться от этих материалов пока нельзя, поскольку они дешевы и легки в обработке. Основные проблемы, которые решаются при проектировании имплантатов из биоинертных материалов, - приближение упругих характеристик имплантата к характеристикам кости, а также снижение скорости коррозионных процессов.

В отличие от биоинертных синтетических материалов на основе полимеров и металлов, керамика на основе фосфатов кальция биосовместима и биоактивна, а значит, является наиболее перспективным материалом для костных имплантатов. Главным ее недостатком является хрупкость. Пока что наилучшим выходом является применение композитов из покрытых кальцийфосфатной керамикой металлов или полимеров (рис. 4). Они хорошо обеспечивают интеграцию материала в костную ткань, не позволяя образовываться фиброзной ткани вокруг биоинертного металла. Со временем протез очень прочно срастется с окружающей костью, которая заменит слой ГАПа. Процент отказа таких протезов значительно ниже, чем у металлических и пластиковых аналогов.

Рисунок 4. Покрытие из биоактивной керамики на протезе тазобедренного сустава. а - Пористая структура керамического покрытия. б - Рентгеновский снимок протеза, имплантированного на место тазоберенного сустава. Сам протез изготовлен из титана и полимеров.

Как придать ГАПу новые свойства?

Не все свойства, необходимые для протезирования, заложены в гидроксилапатит природой. Однако какие-то терапевтические эффекты к материалам можно добавить, усложняя состав композита дополнительными веществами. Однако это не очень удобно, так как усложнит клинические испытания, да и разрабатывать такой материал значительно труднее. Но можно добиться прогресса и получить уникальные свойства, незначительно модифицируя состав и вводя в решетку гидроксилапатита примеси других катионов и анионов. Изменяя состав керамики, можно варьировать ее прочность, размер и форму кристаллитов, скорость растворения и множество других параметров.

Модифицировать кальций-фосфатную керамику можно введением множества компонентов. Возможности для выбора такого модификатора (легирующего компонента) довольно широки: в зависимости от размеров замещаемого иона можно менять состав как на доли, так и на десятки процентов. Например, малые концентрации ионов кремния активируют регенерацию костной ткани, играя роль антигена для соответствующих клеток.

Интересны, например, биологические свойства катионов лантаноидов . Применение ионов лантаноидов в пероральных препаратах ограничено их низкой способностью проходить сквозь стенки желудка и кишечника. Для улучшения доступности катионов лантаноидов можно использовать липофильные оболочки комплексов. Вещества, способные проникать сквозь клеточные мембраны, называются ионофорами . (Подробнее о них можно прочитать в статье «Неизвестные пептиды: „теневая“ система биорегуляции » .) Такая оболочка позволит им проникать сквозь мембрану клетки. Этот метод доставки ионов в остеобласты может стать принципиально новым подходом к лечению целого ряда заболеваний кости.

Благодаря высокому сродству к фосфатам лантаноиды прочно связываются в структуре минералов, составляющих основу костной ткани, не нарушая при этом их структуру. Лантаноиды способны даже замещать кальций в костях, параллельно подавляя развитие клеток, отвечающих за разрыв и резорбцию костной ткани. Эта способность «подражать» функциям ионов кальция позволяет рассматривать лантаноиды в качестве компонента для терапии заболеваний кости.

Частичный обмен катионов кальция на катионы лантаноидов открывает широкие перспективы для целого ряда различных материалов на основе фосфатов кальция. С помощью лантаноидов можно влиять на физические свойства получаемой керамики, регулировать скорость резорбции и даже использовать этот материал как препарат для лечения остеопороза.

На практике ГАП используют в виде цемента или пористых вкладок для заполнения трещин, каверн и других дефектов в ортопедии и челюстно-лицевой хирургии. В виде пленки его наносят на протезы из других материалов (чаще всего металлических или полимерных) для снижения риска отторжения и лучшей фиксации за счет образования новых тканей вокруг протеза. Как правило, это протезы тазобедренного сустава и различные зубные протезы.

Разумеется, искусственно синтезированный гидроксилапатит далек от идеала, и в качестве материала для имплантации при создании полноценных протезов крупных костей или суставов его пока использовать нельзя. Но использование его замечательных свойств, таких как сравнительно простое регулирование состава и морфологии кристаллитов, биоактивность и способность ускорять естественную регенерацию, позволяет делать на его основе препараты для исправления и профилактики костных дефектов уже сейчас. А это значит, что в обозримом будущем мы сможем значительно упростить лечение остеопороза, ускорить излечение переломов, а, возможно, даже и возвращать утраченные конечности с помощью искусственных костей.

Литература

  1. Larry L. Hench. (2005). Bioceramics . Journal of the American Ceramic Society . 81 , 1705-1728;
  2. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. (2000). Достижения в области керамических материалов. «Рос. Хим. Журн.» 6 , 32–46;
  3. Larry L. Hench. (2006). The story of Bioglass® . J Mater Sci: Mater Med . 17 , 967-978;
  4. Дорожкин С.В. и Агатопоулус С. (2002). Биоматериалы: Обзор рынка. «Химия и жизнь» . 2 , 8;
  5. E. D. Eanes, A. W. Hailer. (1998). The Effect of Fluoride on the Size and Morphology of Apatite Crystals Grown from Physiologic Solutions . Calcif Tissue Int . 63 , 250-257;
  6. Qinghong Hu, Zhou Tan, Yukan Liu, Jinhui Tao, Yurong Cai, et. al.. (2007). Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells . J. Mater. Chem. . 17 , 4690;
  7. Cheri A. Barta, Kristina Sachs-Barrable, Jessica Jia, Katherine H. Thompson, Kishor M. Wasan, Chris Orvig. (2007). Lanthanide containing compounds for therapeutic care in bone resorption disorders . Dalton Trans. . 5019;
  8. Неизвестные пептиды: «теневая» система биорегуляции ;
  9. G. Renaudin, P. Laquerrière, Y. Filinchuk, E. Jallot, J. M. Nedelec. (2008). Structural characterization of sol–gel derived Sr-substituted calcium phosphates with anti-osteoporotic and anti-inflammatory properties . J. Mater. Chem. . 18 , 3593.

Физические свойства кристаллов сложных веществ, к которым можно отнести гидроксиапатит (ГА) , в отличии от более простых соединений типа металлов, графита, поваренной соли, носят характер гетеродесмических. Для них внутренние связи наряду с прочными ковалентными связями имеют другие, например, ионные, Ван-дер-ваальсовые, образующие фрагменты. Эти включения, состоящие, в частности, из SO 4 2- , NO 3 - , СO 3 2- , SiO 4 2- и др., могут быть представлены в виде «островов», каркасов, цепочек, слоев. Свободная энергия, которая определяется по формуле:

где U - энергия связи кристалла, S - энтропия, Т - температура, имеет наиболее высокое значение, равное около 20-100 ккал/ моль для ковалентных, а 1 — 10 ккал/моль - Ван-дер-ваальсовых сил. Последним принадлежит ключевая роль в процессах адгезии биополимеров и белков (Бокий, 1971; Киттель, 1978; Прохоров и др., 1995).

Определение свободной энергии в настоящее время возможно преимущественно для простых случаев с использованием зонной теории, предложенной в 1928-1934 гг. Ф. Блохом и Я. Бриллюэном, согласно которой атомы в твердом теле (TiO 2 , MgO, Ti-Ni и т.п.) находятся на расстояниях порядка размера самих атомов. При этом валентные электроны могут распространяться по всему кристаллу, формируя замкнутые энергетические зоны. В зависимости от характера этой зоны, как было показано А. Вильсоном (1931) (частично заполненной, незаполненной, запрещенной, проводимости, неопределенно-валентной и др.) кристаллы проявляют свойства проводника, диэлектрика, полупроводника. В аморфных телах, по-видимому, есть квазизапрещенные энергетические области, являющиеся аналогами зонной структуры, что позволяет им проявлять свойства металлов, диэлектриков и полупроводников (Каганов, Френкель, 1981; Киттель, 1978; Пайерлс, 1956). Характеристики строения кристаллической решетки ГА и ОКФ представлены в таблицах.

Кристаллографические свойства ОКФ и ГА: сравнение рассчитанных d-интервалов для возможных h00 пиков в ОКФ и в ГА (Brown, 1962, Brown et al., 1981)


d h00, A

d h00 , A


Характеристика строения кристаллов ОКФ и ГА


Из биодеградируемых кальциофосфатных материалов, полученных из порошков дикальциофосфата безводного и тетракальций фосфата, готовились стержни или диски с начальным соотношением Са/Р-1,5 и, после дополнительной обработки и прессования, образовывался низкокристаллический гидроксиапатит (ГА). Стержни имплантировались в бедренную кость крысам, и изучалось врастание костной ткани в течение 1-5 недель. Диски культивировались с костными клетками в системе in vitro. При этом происходила замена кальциофосфатного материала новой костью за счет процесса его ремоделирования. Сначала остеокласты и мультиядерные клетки резорбировали материал, а затем остеобласты восстанавливали новую кость в течение 3 недель. В образовавшиеся в материале конусы шириной 0,75 мм, выстланные костными клетками, врастали сосуды, а сама зона неоостеогенеза постепенно расширялась (Foster et al., 1998).

Макротекстурированные поверхности гидроксиапатита обладают более выраженной способностью к интеграции с костной тканью по сравнению с обычными гладкими материалами (Ricci et al., 1998).

Апатит зубов содержит большее количество карбоната и фтора, Mg 2+ , Na + . При этом происходящее замещение ОН на F увеличивает твердость и сопротивляемость к разрушению материала, однако снижает остеоиндуктивные и остеокондуктивные свойства ткани.

Ионы кальция и магния принимают участие в процессах клеточной адгезии (Гольдберг и др., 1992). Вполне логично предположить, что если в кальциофосфатную (КФ) керамику ввести ионы магния, то это может усилить способность поверхности материала прикреплять к себе остеогенные клетки и, тем самым, способствовать процессу связывания костной ткани. Это было подтверждено в опытах на кроликах, которым в бедро имплантировали стержни из TiAlV сплава, покрытые ГА керамикой, нанесенной плазменным напылением. В материал дополнительно с помощью ионной имплантации вносились ионы магния в дозе 1х10 7 см 2 . Оказалось, что через 3 недели, но не ранее, в опытной группе интеграция костной ткани с имплантатом достоверно превышала контрольные значения, что было доказано на ультратонких срезах с использованием флуоресцентных меток (тетрациклин, кальцеин синий, кальцеин зеленый, ализарин красный). Предполагается, что данный эффект обусловлен влиянием магния не только на адгезию костных клеток, но и на функциональную активность остеобластов (Zhang et al., 1998).

Рост костей включает начальное образование аморфного апатитного слоя, который в присутствии воды может частично гидролизироваться с образованием кристаллической структуры гидроксиапатита. Образования, возникающие при этом, очевидно, имеют сложную структуру и симметрию. В реальных условиях все кристаллы разбиты на мозаичные блоки, в которых структуры дезориентированы по отношению друг к другу на малые углы. В костной ткани кристаллы гидроксиапатита ориентированы вдоль коллагеновых волокон. Следует обратить внимание на то, что последние имеют сложную структуру с расположением коллагена по силовым линиям напряжения. Следовательно, процесс кристаллизации гидроксиапатита должен учитывать эту особенность за счет, например, деформации кристаллов в поликристаллической цепи, позволяющей повторять пространственную структуру волокон. Это подразумевает то, что для выполнения биомеханической роли кристаллов гидроксиапатита в костной ткани их форма, размеры и симметрия должны варьироваться. Иначе нарушится структурная и функциональная целостность кости как опорно-двигательного органа.

Из этого вытекает важный практический вывод: при разработке новых биоматериалов на основе гидроксиапатита следует использовать анизотропные кристаллы с изменяющейся формой.

Резюмируя вышесказанное, можно с большой степенью вероятности утверждать, что натуральный гидроксиапатит имеет строго специфическую пространственную организацию, анизотропию, которую чрезвычайно трудно воссоздать в искусственных усло виях. Нарушение структуры КФ, вызванное микроэлементами, анионами или катионами приводит к изменению физико-химических и биологических свойств гидроксиапатитных материалов, что является, очевидно, одной из причин, вызывающих различного рода осложнения при их использовании в травматологии и ортопедии. К сожалению, как мы уже говорили, пока ни одна из известных схем синтеза гидроксиапаптита не позволяет точно повторить особенности кристаллической структуры его естественного изомера. Уровень современной техники еще далек от того, чтобы в искусственных условиях воссоздать направленный рост кристаллов гидроксиапатита, даже из нативных зародышевых матриц. В первую очередь это происходит из-за нарушения равновесных условиях роста кристалла и захвата им технологических примесей, а также способов нанесения ГА покрытий на имплантаты. Следствием вышеуказанных процессов является возникновение точечных дефектов, дислокации и секторированию кристаллической структуры гидроксиапатита , со всеми вытекающими из этого последствиями.

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

Зубная эмаль – это внешняя защитная оболочка коронковой части зубов. Это самая твёрдая ткань человеческого организма, которая на 97% состоит из кристаллов гидроксиапатита. В структуре эмали также присутствует небольшое количество воды (2-3 %) и органических веществ (1-2 %).

Деминерализация эмали – это утрата из эмали зубов минералов и солей, в первую очередь солей кальция. Процесс деминерализации начинается при длительном контакте эмали с кислотами, которые выделяются живущими во рту бактериями. Постоянное употребление продуктов с высоким содержанием углеводов и плохая гигиена полости рта способствуют отложению зубного налета, в котором эти бактерии живут и размножаются. Если не удалять налет вовремя, деминерализация эмали продолжается, приводя через какое-то время к появлению меловидного пятна, а затем и к появлению кариеса.

На стадии белого пятна кариес обратим. Предпринятые вовремя меры по укреплению эмали способствуют уменьшению и даже полному исчезновению пятна. Укрепление эмали (реминерализация) - это насыщение эмали недостающими минералами, способствующее ее восстановлению и повышению устойчивости к кислотам. Оно может осуществляться как в кабинете стоматолога, так и в домашних условиях.

Показания к укреплению эмали

  • Наличие кариеса.
  • Детский возраст.
  • Беременность и период грудного вскармливания.
  • Начальная стадия кариеса (стадия белого пятна).
  • Повышенная чувствительность зубов.
  • Периоды до и после отбеливания зубов.
  • Наличие установленных ортодонтических конструкций (брекет-систем).

Способы укрепления эмали


Другой эффективный способ укрепления эмали, - реминерализация с помощью медицинского нано-гидроксиапатита (nano"mHAP"), идентичного по составу главному компоненту зубной эмали и дентина. Медицинский нано-гидроксиапатит используется в качестве компонента зубных паст, регулярное применение которых, способствует восстановлению и укреплению эмали. Встраиваясь в кристаллическую решетку зубной эмали, медицинский гидроксиапатит запечатывает микротрещины, снижает чувствительность зубов и устраняет кариес на стадии белого пятна. Этот уникальный компонент содержится в пастах Apadent , Apagard , Biorepair , Miradent и др.


Укрепить эмаль и предотвратить кариес можно также с помощью средств, содержащих аморфный кальций фосфат . Взаимодействуя со слюной и гидроксиапатитом, он образует на поверхности зубов биопленку, которая защищает эмаль от вредного воздействия кислот. Также благодаря этой пленке биодоступный кальций проникает в эмаль – происходит ее реминерализация. Аморфный кальций фосфат является главным действующим компонентом паст GC Tooth Mousse и Mi Paste Plus , которые используются как зубной крем – наносятся на поверхность эмали на несколько минут. Этот препарат нельзя применять пациентам с непереносимостью белков молока, так как аморфный кальций фосфат извлекается из казеина коровьего молока.


Новейшим способом укрепления эмали стало использование теобромина – экстракта какао-бобов. Эффективность теобромина в укреплении эмали основана на способности этого вещества стимулировать образование собственных кристаллов гидроксиапатита, в результате чего эмаль становится более кислотоустойчивой. Укрепляющие зубные пасты с теобромином выпускаются компанией Theodent и относятся к косметике класса «люкс».



2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.