Повышенный распад эритроцитов. Понятие гемолиза и классификация. Гемолиз у детей

Гемолиз крови – это процесс, в ходе которого происходит нарушение мембраны эритроцитов, они распадаются, и происходит выброс гемоглобина в окружающую среду (в плазму или сыворотку). Гемолиз делится в соответствии с его расположением, которое может происходить в двух направлениях:

  • in vivo – в теле пациента при тяжелых внутрисосудистых заболеваниях;
  • in vitro – во время отбора проб, транспортировки и обработки образца крови при сдаче анализов.

Общепринятая классификация

Существуют следующие виды гемолиза:

  • Осмотический гемолиз эритроцитов. Может происходить как в гипертоническом, так и в гипотоническом растворе. В гипертоническом растворе клетки выпускают воду в окружающую среду и сжимаются, что может привести к дефектам в клеточной мембране. Это отличает его от гипотонического раствора, в котором клетки заполняются водой, приобретая сферическую форму, они могут разрываться (цитолиз).
  • Физический гемолиз. Обычно, в основе лежит механическое повреждение мембраны. Его может вызвать, например, встряхивание, а также резкие изменения температуры или ультразвук. Это – самый распространенный гемолиз крови при сдаче анализов.
  • Химический гемолиз основан на химической реакции липидов в мембране с определенным веществом. Повреждение может быть вызвано сильными кислотами, поверхностно-активными веществами, жирами или растворителями.
  • Токсичный гемолиз. Происходит при воздействии определенных бактериальных токсинов. Это может быть реакция на присутствие животных (в частности, змеиного) или растительных токсинов.
  • Иммунологический гемолиз. Является типичным при несовместимом переливании.

Многие бактерии вызывают посредством гемолизинов (гемолизином называется вещество, которое вызывает гемолиз) разложение компонентов крови в агаровой среде. В зависимости от типа различаются:

  • α-гемолитическая активность – частичное разложение гемоглобина, зеленый цвет;
  • β-гемолитическая активность – полное разрушение красных кровяных клеток вокруг колонии;
  • γ-гемолитическая активность – нет гемолиза.

Внесосудистое/экстраваскулярное разрушение эритроцитов (in vitro)

Вне сосудов эритроциты разрушаются быстро. Из них выпускается гемоглобин (или целые эритроциты), фагоцитированный тканевыми макрофагами, а образующийся билирубин проникает в окружающую среду, определяя цвет близлежащих тканей (локальное пожелтение – типичное при подкожной гематоме, ушибе).

Желтушная окраска впоследствии обесцвечивается и остается цвет «ржавчины» (гемосидерин – например, локальные кровоподтеки в головном мозге).

Следующим пигментом, возникающим в этом процессе, является цероид – липопигмент, формирующийся в результате полимеризации продуктов окисления липидов (липиды, освобожденные из разрушенных эритроцитов). Смесь цероидов с гемосидерином называется гемофусцином.

Впоследствии происходит создание гематомы неспецифической грануляционной тканью – в периферии присутствуют сидерофаги и фибрин, вдоль которого в гематому врастает грануляционная ткань, а после гематомы остается только небольшой шрам.

Ускоренный внесосудистый гемолиз сопровождает, например, гиперспленизм, некоторые нарушения метаболизма эритроцитов, малярию и т. д. Уровень неконъюгированного билирубина может быть повышен (выше 12 мг/дл). Присутствуют симптомы гемолитической анемии:

  • повышенное количество ретикулоцитов;
  • гемоглобинурия;
  • анемия (гемоглобин менее 120 г/л);
  • сниженное число эритроцитов в картине крови;
  • повышение активности лактатдегидрогеназы.

Разделение внесосудистого процесса разрушения клеток крови в соответствии с причиной

Тип in vitro делится на 4 группы, основанные на причине возникновения:

  • механический – слишком сильное встряхивание, всасывание при отборе, центрифугирование при высокой скорости, транспортировка цельной крови на большие расстояния;
  • осмотический – мокрые трубки, отбор меньше заданного количества крови в пробирку, содержащую антикоагуляционный агент;
  • термический – кровь подвергается воздействию слишком низких или высоких температур;
  • химический – недостаточное высыхание дезинфекции, которая разрушает мембрану эритроцитов.

Внутрисосудистое разрушение эритроцитов (in vivo)

Распад клеток крови в кровеносных сосудах может быть вызван следующими причинами:

  • самими эритроцитами (корпускулярный);
  • внешними агентами (экстракорпускулярный).

Гемоглобин, высвобождаемый из разрушающихся эритроцитов, связывается с гаптоглобином, что приводит к возникновению комплекса, который не проходит клубочковый фильтр (функция гаптоглобина, формируемого в печени, заключается в предотвращении повреждения почек, а также потери железа). Комплекс поглощается макрофагами – гемоглобин распадается, возникает билирубин и ферритин или гемосидерин.

Повышенный индекс гемолиза характеризуется гемосидерозом. Если количество выпущенного гемоглобина выше, чем может связывать гаптоглобин (в особенности, при остром гемолизе снижается концентрация гаптоглобина в сыворотке (норма – 0,3-2 у. е.)), то возникает гемоглобинемия.

Избыточный гемоглобин проходит через клубочковый фильтр в канальцы почек – возникает гемосидеринурия (часть молекул гемоглобина захватывается клетками проксимальных канальцев и преобразуется в гемосидерин, который затем высвобождается в мочу). Вследствие осаждения гемоглобина развивается повреждение почек.

Причины внутрисосудистого разрушения эритроцитов

Гемолиз эритроцитов in vivo происходит в сосудистой системе человека – имеет место внутрисосудистый гемолиз. Освобожденный гемоглобин создает комплексы с белком плазмы – гаптоглобином. Он, в свою очередь, поглощается клетками ретикулярной системы, где распадается с формированием билирубина, который накапливается в печени и затем выводится из организма.

Внутрисосудистый гемолиз характеризуется неопределяемой концентрацией гаптоглобина, который сбалансирован комплексами с гемоглобином и повышенной концентрацией непрямого билирубина, который печень не успевает секретировать в достаточном количестве. Уровень калия не увеличивается, функционирующие почки успевают выделять его с мочой.

Причины гемолиза в кровеносных сосудах (внутрисосудистый гемолиз) могут быть следующими:

  • гематологические заболевания: гемолитическая анемия, синдром диссеминированной внутрисосудистой коагулопатии;
  • нарушение обмена веществ (заболевания печени);
  • химические эффекты (гемолиз из-за приема лекарств);
  • физические эффекты (искусственная замена клапана);
  • ожоги;
  • реакция после переливания крови;
  • тяжелая инфекция.

Диагностика возможных причин

В диагностических целях применяется несколько методов.

Тест Кумбса

Тест Кумбса – это обнаружение антител к поверхностным антигенам эритроцитов. Антиглобулиновая сыворотка добавляется к отмытым эритроцитам пациента. Выпадение осадка указывает на наличие иммуноглобулинов или компонентов комплемента на эритроцитах.

Тест делится на 2 типа:

  • прямой тест Кумбса (также называемый прямым антиглобулиновым тестом) – позволяет обнаруживать красные кровяные клетки, покрытые иммуноглобулинами и компонентами комплемента in vivo;
  • непрямой тест Кумбса – позволяет обнаруживать антиэритроцитарные антитела, присутствующие в сыворотке крови или плазме пациента – имеет значение для лиц, которым неоднократно приходилось сдавать/принимать кровь.

С помощью этих тестов исследуется устойчивость клеток против низкого осмотического давления окружающей среды (т. е. минимальное осмотическое сопротивление – максимальное осмотическое сопротивление).

  • Нормальные значения в среднем: 0,4% NaCl при минимальном и 0,3% NaCl при максимальном осмотическом сопротивлении.

Ферментный анализ эритроцитов

При отсутствии глюкозо-6-фосфат-дегидрогеназы происходит снижение восстановления глутатиона. Эритроциты (их мембрана) подвержены повреждениям от активных форм кислорода.

Тест Гама

Тест Гама – это диагностический тест (скрининг) для . Эритроциты инкубируются в сыворотке, подкисленной до рН 6,2, кислая среда активирует комплемент и патологические эритроциты поддаются гемолизу.

Проточная цитометрия

В этом методе определяются белки, связанные с клеточной мембраной и участвующие в следующих процессах:

  • защита от литических эффектов комплемента;
  • 2 белка (MIRL и DAF) обозначаются в соответствии с теми антителами, с которыми специфически взаимодействуют, CD-55 и CD-59.

Влияние на результат анализа

Гемолиз может повлиять на определение анализа крови высвобождением веществ из эритроцитов в плазму или созданием аналитических помех.

Повышение концентрации в крови

С распадом эритроцитов в плазму проникают вещества, которые во внеклеточной жидкости имеют иное представление, чем во внутриклеточном содержании красных кровяных клеток. Эти вещества могут при определении анализируемого вещества в крови в значительной степени повлиять на результаты, т. к. их концентрация в эритроцитах в несколько раз выше, чем в плазме (сыворотке крови).

Разбавление плазмы

Тема: « ГЕМОСТАЗ И ГРУППЫ КРОВИ».

Лекция № 4.

План:

1. Гемолиз и его виды.

2. Скорость оседания эритроцитов и ее определение.

3. Гемостаз и его механизмы.

4. Группы крови.

5. Резус-фактор.

ЦЕЛЬ: Знать физиологические механизмы гемолиза, скорости оседания эритроцитов, гемостаза (сосудисто-тромбоцитарного и коагуляционного).

Уметь различать группы крови, понимать сущность резус-кон­фликта.

Эти знания и умения необходимы в клинике для контроля за течением болезни и выздоровлением, при остановке кровотечения, переливании донорской крови, проведении мероприятий по профилактике выкидыша плода при повторной беременности у резус-отрицательных женщин.

Гемолиз (греч. haima - кровь, lusis - распад, растворение), или гематолизис, эритролиз, - это процесс внутрисосудистого распада эритроцитов и выхода из них гемоглобина в кровяную плазму, которая окрашивается при этом в красный цвет и становится прозрачной ("лаковая кровь").

1) Осмотический гемолиз возникает при уменьшении осмотичес­кого давления, что вначале приводит к набуханию, а затем к разруше­нию эритроцитов. Мерой осмотической стойкости (резистентности) эритроцитов является концентрация МаС1, при которой начинается гемолиз. У человека это происходит в 0.4% растворе, а в 0.34% раство­ре разрушаются все эритроциты. При некоторых заболеваниях осмотическая стойкость эритроцитов уменьшается, и гемолиз может наступить при больших концентрациях КаС1 в плазме.

2) Химический гемолиз происходит под влиянием химических веществ, разрушающих белково-липидную оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол, желчные кислоты и т.д.).

3) Механический гемолиз наблюдается при сильных механичес­ких воздействиях на кровь, например, при перевозке ампульной крови по плохой дороге, сильном встряхивании ампулы с кровью и т.д.

4) Термический гемолиз возникает при замораживании и размораживании ампульной крови, а также при нагревании ее до температуры 65-68°С.

5) Биологический гемолиз развивается при переливании несовместимой или недоброкачественной крови, при укусах ядовитых змей, скорпионов, под влиянием иммунных гемолизинов и др.

6) Внутриаппаратный гемолиз может происходить в аппарате искусственного кровообращения во время перфузии (нагнетания) крови.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ, или РОЭ) - показатель, отражающий изменения физико-химичес­ких свойств крови и измеряемой величиной столба плазмы, осво­бождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П.Панченкова.



В норме СОЭ равна:

у мужчин - 1-10 мм/час;

у женщин - 2-15 мм/час;

у новорожденных - 0.5 мм/час;

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит от свойств плазмы, в первую очередь от содержания в ней крупномолекулярных белков - глобулинов и особенно фибрино­гена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, и СОЭ достигает до 40-50 мм/час. О влиянии свойств плазмы на величину СОЭ говорят резуль­таты опытов. (Так, например, эритроциты мужчин, помещенные в плазму мужской крови, оседают со скоростью 5-9 мм/час, а в плазму беременной женщины - до 50 мм/час. Равным образом эритроциты женщины оседают в плазме мужской крови со скоростью около 9 мм/час, а в плазме беременной женщины - до 60 мм/час. Считают, что крупномолекулярные белки (глобулины, фибриноген) уменьшают электрический заряд клеток крови и явления электроотталкивания, что способствует большей СОЭ (образованию более длинных монетных столбиков из эритроцитов). Так, при СОЭ 1 мм/час монетные стол­бики образуются примерно из 11 эритроцитов, а при СОЭ 75 мм/час скопления эритроцитов имеют диаметр 100 мкм и более и состоят из большого количества (до 60000) эритроцитов.)

Для определения СОЭ используется прибор Т.П.Панченкова, состоящий из штатива и градуированных стеклянных пипеток (капилляров).

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут остановить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

1) сосудистого спазма,

2) образования, уплотнения и сокращения тромбоцитарной пробки.

Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа. Осуществляется в три фазы: I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, принимает участие 15 плазменных факторов: фибриноген, протромбин, тканевой тромбопластин, каль­ций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор и др. Большинство этих факторов образуется в печени при участии витамина К и является профермен­тами, относящимися к глобулиновой фракции белков плазмы. Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоци­тами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Сеть из волокон нерастворимого фибрина и опутанные ею эритроциты, лейкоциты и тромбоциты образуют кровяной сгусток.

Плазма крови, лишенная фибри­ногена и некоторых других веществ, участвующих в свертывании, на­зывается сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме соста­вляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновремен­но еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свертывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из тка­ни легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазмен­ных факторов и динамические превращения тромбоцитов.

Выделяе­мый слюнными железами медицинских пиявок гирудин действует угнетающе на третью стадию процесса свертывания крови, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавший­ся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановле­ние просвета закупоренного сгустком сосуда. Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может при­вести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К.Ландштейнер и в 1903 г. чех Я.Янский обна­ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме были найдены агглютинины a и b, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты. Агглютиногены А и В в эритроцитах, как и агглютинины a и b в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглютинин a, а также В и bназываются одноименными. Склеивание эритроцитов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (человека, получающего кровь), т.е. А + a, В + b или АВ + ab. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглютинин.

Согласно классификации Я.Янского и К.Ландштейнера у людей имеется 4 комбинации агглютиногенов и агглютининов, которые обозначаются следующим образом:

Людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. Поэтому людей с I группой крови называют универсальными донорами. Людям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно переливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают только одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная терапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглютининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тяжелые осложнения. Поэтому людей с I группой крови, содержащих агглютинины анти-А и анти-В, сейчас называют опасными универсальными донорами;

в-третьих, в системе АВО выявлено много вариантов каждого агглютиногена. Так, агглютиноген А существует более, чем в 10 вариантах

В 1930 г. К.Ландштейнер, выступая на церемонии вручения ему Нобелевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эритроцитах человека обнаружено более 500 различных агглютиногенов.

Для определения групп крови нужно иметь стандартные сыво­ротки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агглютинации можно определить его группу.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностймулирующее действие - с целью стимуляции защит­ных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью остановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в легкоусвояемом виде.

Как мы только что отметили,! кроме основных агглютино­генов А и В, в эритроцитах могут быть другие дополнительные, в част­ности, так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютино­ген. Такая кровь называется резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютино-генов - D, С, Е, из которых наиболее активен D. Особенностью резус-фактора является то, что у людей отсутствуют антирезус-агглютини­ны. Однако если человеку с резус-отрицательной кровью повторно пе­реливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра-батываются специфические анти­резус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-поло­жительным. Кровь плода проникает в организм матери, вызывая обра­зование в ее крови антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концентрации антирезус-агглютининов может наступить смерть плода и выкидыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации анти­резус-агглютининов. Чаще всего первый ребенок рождается нормаль­ным, поскольку титр этих антител в крови матери возрастает относи­тельно медленно (в течение нескольких месяцев). Но при повторной бе­ременности резус-отрицательной женщины резус-положительным пло­дом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беремен­ности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица­тельным женщинам назначают антирезус-гаммаглобулин, который нейтрализует резус-положительные антигены плода.

Гемолиз ― разрушение оболочки эритроцитов, сопровождающееся выходом Hb в плазму (лаковая кровь).

Виды гемолиза:

1. Механический (in vivo при разможжении тканей, in vitro при встряхивании крови в пробирке).

2. Термический (in vivo при ожогах, in vitro при замораживании и оттаивании или нагревании крови)

3. Химический (in vivo под влиянием химических веществ, при вдыхании паров летучих веществ (ацетон, бензол, эфир, дихлорэтан, хлороформ), растворяющих оболочку эритроцитов, in vitro под влияние кислот, щелочей, тяжелых металлов и др.).

4. Электрический (in vivo при поражении электрическим током, in vitro при пропускании электрического тока через кровь в пробирке). На аноде (+) гемолиз кислотный, на катоде (–) ― щелочной.

5. Биологический. Под влиянием факторов биологического происхождения (гемолизины, яд змей, грибной яд, простейшие (молярийный плазмодий).

6. Осмотический. В гипотонических растворах у человека начало в 0,48% растворе NaCl, а в 0,32% ― полный гемолиз эритроцитов.

Осмотическая резистентность эритроцитов (ОРЭ) - устойчивость их в гипотонических растворах.

Различают:

    минимальнальную ОРЭ ― концентрация раствора NaCl, при которой начинается гемолиз (0,48-0,46%). Гемолизируются менее устойчивые.

    максимальную ОРЭ. ― концентрация раствора NaCl, в котором гемолизируются все эритроциты (0,34-0,32%).

Осмотическая резистентность эритроцитов зависит от степени их зрелости и формы.

Молодые формы эритроцитов, поступающие из костного мозга в кровь, наиболее устойчивы к гипотонии.

7. Иммунный гемолиз ― при переливании несовместимой крови или при наличии иммунных антител к эритроцитам.

8. Физиологический ― гемолиз эритроцитов, закончивших свой срок жизни (в печени, селезенке, красном костном мозге).

4. Скорость оседания эритроцитов (соэ)

Если кровь предотвратить от свертывания (с помощью антикоагулянта) и дать ей отстояться, то отмечается оседание эритроцитов.

СОЭ в норме равна: у мужчин 1-10 мм/ч;

у женщин 2-15 мм/ч;

у новорожденных 1-2 мм/ч.

СОЭ зависит от:

    Свойств плазмы:

СОЭ ускоряется за счет повышения крупномолекулярных глобулинов и особенно фибриногена. Их концентрация повышается при воспалительных процессах, беременности. Они снижают электрический заряд эритроцитов, способствуя сближению эритроцитов и образованию монетных столбиков (перед родами количество фибриногена увеличивается в 2 раза).

    СОЭ уменьшается при увеличении количества эритроцитов (при эритремии, например, оседание эритроцитов может полностью прекратиться вследствие повышения вязкости крови). При анемиях СОЭ ускоряется.

    СОЭ понижается при изменении формы эритроцитов (серповидно-клеточная анемия).

    СОЭ замедляется при снижении рН и, наоборот, ускоряется при повышении рН.

    Повышенное насыщение эритроцитов гемоглобином ускоряет СОЭ.

5. Лейкоциты, их классификация, свойства и функции.

Лейкоциты или белые кровяные клетки, в отличии от эритроцитов, имеют ядро и другие структурные элементы, свойственные клеткам. Размер от 7,5 до 20 мкм.

Функции лейкоцитов:

    Защитная (участие в обеспечении неспецифической резистентности и создании гуморального и клеточного иммунитета).

    Метаболическая (выход в просвет пищеварительного тракта, захват там питательных веществ и перенос их в кровь. Особенно это имеет существенное значение в поддержании иммунитета у новорожденных в период молочного вскармливания.

    Гистолитическая ― лизис (растворение) поврежденных тканей;

    Морфогенетическая - уничтожение различных закладок в период эмбрионального развития.

Функции отдельных видов лейкоцитов:

1. Незернистые (агранулоциты) :

а) моноциты ― 2-10% всех лейкоцитов (макрофаги). Самые крупные клетки крови. Обладают бактериоцидной активностью. Появляются в очаге поражения после нейтрофилов.

В очаге воспаления фагоцитируют:

    Микроорганизмы.

    Погибшие лейкоциты.

    Поврежденные клетки ткани.

Они таким образом очищают очаг поражения. Это своеобразные "дворники организма".

б) лимфоциты ― 20-40% от всех лейкоцитов.

В отличии от других форм лейкоцитов они после выхода из сосуда обратно не возвращаются и живут не несколько дней, как другие лейкоциты, а 20 и более лет.

Лимфоциты являются центральным звеном иммунной системы организма. Обеспечивают генетическое постоянство внутренней среды.

Они осуществляют:

    Cинтез антител.

    Лизис чужеродных клеток.

    Обеспечивают реакцию отторжения трансплантата.

    Иммунную память.

    Уничтожение собственных мутантных клеток.

    Состояние сенсибилизации.

Различают:

Т лимфоциты (обеспечивают клеточный иммунитет):

а) Т–хелперы.

б) Т–супрессоры.

в) Т–киллеры.

г) Т–амплифайеры (ускорители).

д) Иммунологической памяти.

В лимфоциты (обеспечивают гуморальный иммунитет).

Образуются лимфоциты из общей стволовой клетки. Дифференцировка Т-лимфоцитов происходит в тимусе, а В–лимфоцитов ― в красном костном мозге, пейеровых бляшках кишечника, миндалинах, лимфатических узлах, червеобразном отростке.

Нулевые лимфоциты (ни Т–, ни В–лимфоциты) На их долю приходится 10-20% лимфоидных клеток.

Гранулоциты :

а) нейтротрофилы ― самая большая группа лейкоцитов (50-70% от всех лейкоцитов). Обладающие высокой бактерицидной активностью. Являются носителями рецепторов к IgG, белкам комплемента. Они первыми появляются в очаге воспаления фагоцитируют и уничтожают вредные агенты. 1 нейтрофил способен фагоцитировать 20-30 бактерий.

б) Эозинофилы ― 1-5% от всех лейкоцитов (окрашиваются эозином). В кровотоке пребывают несколько часов, после чего мигрируют в ткани, где подвергаются разрушению.

Функции эозинофилов:

    Фагоцитоз.

    Обезвреживание токсинов белковой природы.

    Разрушение чужеродных белков и комплексов антиген-антитело.

    Продуцируют гистаминазу.

    Вырабатывают плазминоген, т.е. участвуют таким образом в фибринолизе. Их количество увеличивается при глистных инвазиях. Осуществляют цитотоксический эффект в борьбе с гельминтами, их яйцами и личинками.

в) Базофилы ― 0-1% от всех лейкоцитов. Продуцируют гистамин и гепарин (вместе с тучными клетками их называют гепариноцитами). Гепарин препятствует свертыванию крови, гистамин расширяет капилляры, способствует рассасыванию и заживлению ран.

Количество лейкоцитов в норме: 4-9 х 10 9 /л (Гига/л).

Увеличение количества лейкоцитов называется лейкоцитозом . Различают следующие виды лейкоцитоза:

Физиологический или перераспределительный . Обусловлен перераспределением лейкоцитов между сосудами различных органов. К физиологическим видам лейкоцитоза относятся:

    Пищеварительный . После приема пищи в результате поступления лейкоцитов в циркуляцию из депо крови. Их особенно много скапливается в подслизистом слое кишечника, где они выполняют защитную функцию

    Миогенный. Под влиянием тяжелой мышечной работы количество лейкоцитов возрастает в 3-5 раз. Он может быть как перераспределительным, так и истинным за счет усиления лейкопоэза.

    Беременных . Лейкоцитоз преимущественно местного характера в подслизистой оболочке матки.

    Новорожденных (метаболическая функция).

    При болевых воздействиях.

    При эмоциональных воздействиях.

Патологический(реактивный )― ответная (реактивная) гиперплазия, обусловленная инфекцией, гнойным, воспалительным, септическим и аллергическим процессами.

Лейкоз ― неконтролируемая злокачественная пролиферация лейкоцитов. Лейкоциты в этих случаях мало дифференцированы и не выполняют свои физиологические функции.

    Лейкопения (количество лейкоцитов ниже 4 х 10 9 /л).

Продолжительность жизни различных форм лейкоцитов различна (от 2-3 дней до 2-3 недель). Долгоживущие лимфоциты (клетки иммунологической памяти) живут десятки лет.

Большую угрозу для жизни человека представляет собой такое явление, как гемолиз эритроцитов.

Для врачей это известный термин, но если же человек имеет к медицине опосредованное отношение, то он зачастую вообще не представляет, чем ему может грозить перекисный гемолиз эритроцитов, в чем его причины, и поддается ли он каким-то методам лечения.

При гемолизе эритроцитов происходит разрушение внешних оболочек красных кровяных клеток, из-за чего гемоглобин, который находится в эритроцитах, вытекает в плазму крови.

В лабораторных условиях видно, что сыворотка крови при гемолизе становится прозрачной, «лаковой».

В действительности процесс гемолиза может иметь обычные физиологические причины – эритроциты не вечные, срок их жизни составляет примерно три-четыре месяца.

В конце этого цикла старые эритроциты естественным образом разрушаются, и организм даже «не замечает» этого события, поскольку место старых эритроцитов уже заняли новые, молодые.

Распад эритроцитов происходит в основном в селезенке, при этом гемоглобин, содержащийся внутри клеток, превращается в билирубин, который утилизируется печенью.

Число красных клеток в русле крови постоянно и у детей, и у взрослых, основной функцией эритроцитов считается доставка кислорода к тканям и внутренним органам.

Для человека будет крайне опасным состояние, при котором вдруг эритроциты перестанут выполнять свою работу по кислородному обмену, и внутренние органы останутся без питания.

Не всегда гемолиз происходит исключительно в русле крови.

Поэтому выделяют два вида разрушения эритроцитов по месту их дислокации:

  • происходящий в кровотоке гемолиз, или внутрисосудистое разрушение эритроцитов;
  • гемолиз в клетках печени, селезенки, тканях костного мозга, или внутриклеточное разрушение эритроцитов.

Если врачи говорят, что гемолиз случился «in vitro», то это значит, что распад эритроцитов с выделением гемоглобина произошел в лабораторных условиях.

«In vivo» в медицинской терминологии обозначает протекание процесса в теле человека.

Поэтому врачи различают следующие виды гемолиза:

  • механическое разрушение мембран красных клеток. Такое состояние наблюдается в случае сильного механического воздействия на эритроциты, из-за чего они теряют целостность. Механический гемолиз может произойти при сильном встряхивании колбы с образцом крови или при гемодиализе, когда кровь проходит через аппараты принудительного кровообращения. В человеческом организме такой тип гемолиза приводит чаще всего к немедленной смерти человека;
  • осмотический гемолиз может произойти в результате воздействия гипотонических растворов на эритроциты. Физрастворы в концентрации 0,9 — 0,85 % практически не оказывают вредного воздействия на красные клетки. А вот если в вену человека вводить менее концентрированные растворы NaCl, то вода будет проникать сквозь мембраны эритроцитов, из-за чего те увеличатся в размерах, и, в конце концов, разорвутся;
  • старт иммунному гемолизу дает переливание человеку несовместимой крови другой группы или резус-фактора. Такой вид разрушения эритроцитов может наблюдаться и в результате аутоиммунных патологий, когда «свои» клетки рассматривают «чужих» как агрессоров и уничтожают их;
  • термическое разрушение красных клеток чаще всего наблюдается «in vitro», в случае, когда колбу с сывороткой крови нагревают выше допустимых значений. «In vivo» – такой процесс наблюдается при обширных ожогах кожных покровов человека;
  • химический гемолиз происходит «in vitro» в результате воздействия на эритроциты различных реагентов, «in vivo» такое может случиться из-за тяжелого отравления гемолитическими ядами.

Разрушение эритроцитов способно происходить в результате воздействия на них электрического тока, в случае помещения колбы с образцом крови в электрическое поле.

Причины разрушения клеток

Иногда врачи совмещают биологическое разрушение красных клеток и химическое.

Действительно, и в первом, и во втором случае происходит разрушение внешних оболочек эритроцитов под воздействием химических реагентов, которые могут иметь искусственное или естественное происхождение.

Все люди знают, что укусы некоторых змей и пресмыкающихся смертельно опасны, но далеко не все представляют, почему.

Дело в том, что в яде многих змей содержатся гемолитические компоненты, губительно воздействующие на эритроциты. В этом случае гемолиз происходит практически мгновенно, и человек умирает.

Не все знают, что во многих грибах содержатся опасные компоненты, которые могут стать причиной гемолиза.

Врачи не рекомендуют даже брать в руки подозрительные грибы, не то что их есть, потому что биологически активные ядовитые вещества, содержащиеся, например, в бледной поганке, способны проникать под кожу человека при контакте и вызывать разрушение мембран красных клеток.

Даже если бледная поганка просто находится в одной корзине с хорошими грибами, то это крайне опасно для человека, потому что в такой ситуации велика вероятность проникновения яда поганки в съедобные грибы.

Однако причины разрушения эритроцитов «in vivo» могут быть разнообразными.

Гемолиз могут вызвать:

  • попадание в кровоток солей тяжелых металлов, таких как свинец, ртуть, кадмий;
  • отравление концентрированной уксусной кислотой или мышьяком;
  • приобретение синдрома свертывания крови в капиллярах и сосудах;
  • некоторые тяжелые инфекционные поражения организма, такие как малярия, заражение гемолитическим стрептококком;
  • проникающая радиация, действие ультразвука;
  • обширные повреждения кожи в результате химического или температурного воздействия;
  • газовая гангрена при септическом состоянии;
  • неполноценная функциональность эритроцитов, причиной которой могут быть наследственные заболевания;
  • прием лекарственных средств, таких как препараты из группы сульфаниламидов, хлорпропамид, «Диакарб», другие мочегонные средства. Терапевтические препараты против туберкулеза тоже могут быть причиной гемолиза.

Способность к гемолизу красных клеток врачи определяют по, так называемой, осмотической резистентности эритроцитов или ОСЭ.

Это понятие отражает степень устойчивости мембран клеток к воздействию на них слабых соляных растворов.

При этом в лабораторных условиях было установлено, что мембраны начинают разрушаться, если на них воздействовать раствором в концентрации 0,48 %.

В случае действия на эритроциты более слабого раствора – 0,32 % концентрации NaCl, происходит полное разрушение всех красных клеток.

Было установлено, что молодые эритроциты более устойчивы или резистентны к воздействию на них гипотонических растворов, чем старые.

Зрелые красные клетки имеют шаровидную форму, и устойчивость внешних оболочек у них очень низкая.

Если красная клетка приобретает сферическую форму, то это первый признак того, что ее жизненный цикл на исходе. По индексу шарообразности судят о признаках скорой гибели эритроцитов.

Признаки и лечение патологии

Хотя чаще всего разрушение красных клеток не сопровождается какими-либо специфическими симптомами.

Есть признаки, свидетельствующие о том, что в организме человека происходит гемолиз:

  • кожные покровы резко бледнеют;
  • у человека постоянная тошнота, сопровождаемая неукротимой рвотой;
  • начинает болеть живот.

Гемолитический криз сопровождается судорогами, потерей сознания, переходящей в кому. Если разрушение эритроцитов происходит в клетках печени, то визуально можно отметить ее увеличение, в случае внутрисосудистого гемолиза меняется окраска мочи.

В результате распада красных клеток у человека фиксируется патология под названием гемолитическая анемия.

Это состояние характерно появлением в крови билирубина как продукта постоянного и быстрого разрушения оболочек эритроцитов.

Выделяют два вида гемолитических анемий:

  • наследственную;
  • приобретенную.

В первом случае у человека отмечается неправильное строение эритроцитов, недостаточная деятельность ферментативной системы, дефектный состав красных клеток.

Во втором случае к гемолитической анемии приводит действие разных токсинов, ядов, радиационного излучения.

Оба вида этой патологии сопровождаются у взрослых людей следующими признаками:

  • желтушным цветом кожи;
  • болью в верхней части живота;
  • общим состоянием слабости, недомогания, головокружениями;
  • нарушением сердечных ритмов;
  • суставной болью.

Аутоиммунная анемия сопровождается чувствительностью организма человека к низким температурам.

Отдельно следует сказать о гемолитической анемии, встречающейся у новорожденных детей.

Чаще всего причиной такого состояния бывает иммунный гемолиз, когда резус-фактор матери и ребенка не совпадают.

При этом кровяные клетки матери проникают через плацентарный барьер ребенка и начинают уничтожать эритроциты плода, считая их «врагами» для организма.

Такое состояние считается очень опасным, потому что вероятность смерти зародыша в результате конфликта резус-факторов довольно велика и составляет 3-4 случая на сто беременных.

Поскольку гемолитический криз является крайне опасным состоянием для жизни человека, врачи выработали определенную последовательность действий при лечении этого состояния.

Основным методом лечения является экстренное переливание крови, которое дополняется терапией глюкокортикостероидными препаратами.

Иногда, если лечение не приносит нужного эффекта, то пациенту приходится удалять селезенку.

Гемолиз крови (от латинского слова - Haemolysis и греческого слова Haima - кровь + lysis - расписание, разрушения, растворения) - процесс повреждения эритроцитов, при котором гемоглобин выходит в окружающую среду. После гемолиза плазма крови - в норме прозрачная жидкость, окрашенная в красный цвет. Гемолиз эритроцитов может возникнуть как в кровяном русле, так и в пробирке под влиянием самых разнообразных агентов.

Причины гемолиза эритроцитов крови

Основные факторы (причины), способные вызвать гемолиз, следующие:

  • физические и химические агенты
  • гемолитические яды растительного, животного или бактериального происхождения
  • гемолитические свойства сыворотки крови животных (нормальные гемолизины) гемолитические свойства антител (специфические, или иммунные гемолизины)

Анализы крови при гемолизе эритроцитов

В клинической практике применяют исследования осмотического гемолиза эритроцитов (анализ крови) при различных заболеваниях - изучение устойчивости (резистентности) эритроцитов гипотонических растворов NaCl. Красные кровяные тельца здорового человека начинают поддаватся процессу гемолиза в 0,44-0,48% растворе натрия хлорида полный гемолиз крови происходит в 0,28-0,32% растворе натрия хлорида.

Концентрация натрия хлорида, при которой начинается осмотический гемолиз эритроцитов , выражает минимальную осмотическую резистентность красных кровяных телец. Концентрация натрия хлорида, при которой происходит полный гемолиз крови, выражает максимальную резистентность эритроцитов.

Осмотическая резистентность эритроцитов повышается при раке желудка и других органов, отеках почек, артериосклерозе, механической желтухи и др.Осмотическая резистентность эритроцитов снижается при анемии вследствие кровотечения, при язве желудка, гемолитической желтухи и др. Под влиянием наркотиков уретанового и алкогольного ряда проницаемость красных кровяных телец для воды, калия и гемоглобина уменьшается, а осмотический вид гемолиза эритроцитов задерживается. Гемолитические процессы происходят в здоровом организме и при различных заболеваниях. В здоровом организме срок жизни эритроцита в среднем составляет 120 дней, после чего в печени, селезенке, костном мозге и лимфатических узлах он подвергается разрушению, что сопровождается призками гемолиза эритроцитов. Основным способом разрушения эритроцитов является фрагментация - процесс постепенного распада, который происходит во время их циркуляции, преимущественно в синусах селезенки, где кровоток чрезвычайно замедлен. В физиологических условиях эритроциты окончательно разрушаются только в клетках ретикулоэндотелиальной системы. После разрушения эритроцитов гемоглобин распадается на вещество (протеин) - глобин и железосодержащий пигмент - гем . Путем сложных химических превращений из гема образуется билирубин. Освободившееся в процессе распада гемоглобина железо прежде всего депонируется в ретикуло-эндотелиальных клетках селезенки и печени. Отсюда после сложных химических превращений оно поступает в кровоток. В происхождении патологического гемолиза крови большую роль играют определенные нарушения во внешней и внутренней среде.



2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.