Параметры оценки систем дыхания и кровообращения. Параметры центральной гемодинамики. Гарвардский стандарт мониторинга

Вопросы контроля за гемодинамическими параметрами при проведении инфузионной терапии являются весьма проблематичными. Измерение отдельных параметров, например ЦВД или ДЗЛА, не коррелирует с прямым определением ОЦК. Нередко на фоне гиповолемии наблюдается венозная и артериолярная вазоконстрикция, при этом могут наблюдаться высокие цифры ЦВД. Кроме того, на этот параметр влияет целый ряд других факторов: давление в грудной клетке, состояние сосудов малого круга кровообращения, функция трехстворчатого клапана, насосная функция левых и правых отделов сердца. Высокое ЦВД на фоне гиповолемии может наблюдаться при использовании неоправданно больших дыхательных объемов и PEEP во время ИВЛ, у пациентов с легочной гипертензией, а также при сердечной недостаточности. Кроме того, недостоверные результаты могут быть получены при неправильной позиции центрального венозного катетера, к примеру, при попадании его дистального конца в правый желудочек сердца.

Показатель ДЗЛА также не всегда отражает состояние ОЦК и преднагрузки левого желудочка. На этот показатель нельзя ориентироваться у больных со II-III степенью легочной гипертензии. Во избежание диагностических ошибок при значительных гемодинамических нарушениях во время восполнения ОЦК помимо вышеперечисленных параметров необходим комплексный мониторинг с измерением сердечного выброса, Т02, П02, концентрации лактата и показателей оксигенации смешанной венозной крови.

Если во время проведения пробы наблюдается снижение СВ , инфузию жидкости прекращают. При нормальном ответе на пробу значения СИ достигают 2,5-3,5 л/мин/м2 после возрастания ДЗЛК до 10-12 мм рт. ст. (кривая 1). У некоторых больных нормальная производительность сердца наблюдается при высоких давлениях наполнения, достигающих 18-20 мм рт. ст. (кривая 2). Встречаются случаи, когда нормальная производительность сердца наблюдается при относительно невысоких значениях показателей преднагрузки (кривая 3). У ряда пациентов при низких давлениях наполнения желудочков сердца инфузия небольших объемов приводит к резкому падению СИ, что свидетельствует о низких функциональных резервах миокарда и необходимости инотропной поддержки (кривая 4). В этих случаях возможно введение жидкости в медленном темпе под прикрытием симпатомиметиков.

Циркуляторный шок

Циркуляторный шок представляет собой клинический синдром общей недостаточности кровообращения с неадекватной тканевой оксигенацией (Т02), приводящей к снижению потребления кислорода (П02), анаэробному метаболизму и лактат-ацидозу. Weil M.H. и Henning подразделяют шок на 4 категории: гиповолемический, кардиогенный, дистрибутивный, обусловленный относительной гиповолемией, и обструктивный, обусловленный обструкцией магистральных сосудов.

Гиповолемический шок обусловлен снижением ОЦК. Его основными причинами являются кровотечение (травматический или геморрагический шок) и дегидратация (ожоговый шок или шок, обусловленный потерей жидкости и электролитов при диарее, рвоте или через фистулу).

Дистрибутивный шок (увеличение емкости сосудистой системы):
анафилактический шок;
септический шок;
неврогенный шок (нарушение центральной регуляции сосудистого тонуса после церебральной или спинальной травмы).

Обструктивный шок (обструкция магистральных сосудов).
тромбоэмболия легочной артерии;
синдром верхней полой вены.

Туберкулез легких, особенно хронический и распространенный, как правило, сопровождается нарушениями дыхательной функции и изменениями сердечно-сосудистой системы. Они могут быть обусловлены интоксикацией, поражением легких, плевры, бронхов.Исследование функций дыхания и кровообращения обычно не имеет значения для установления нозологического диагноза, но играет несомненную роль в оценке общего состояния больного, определении лечебной тактики и особенно в решении вопросов об оперативных вмешательствах и оценке их результатов. Цель исследования состоит в выявлении возможной дыхательной, сердечно-сосудистой недостаточности и компенсаторных резервов этих систем.

Функции дыхания и кровообращения можно оценить на основании жалоб, анамнеза, физикального исследования, измерения артериального давления, электрокардиографии и рентгенологических данных. Более глубокое исследование проводят с помощью специальной аппаратуры и лабораторных методов диагностики в условиях дозированной физической нагрузки.
Для качественной и количественной характеристик нарушений дыхания существует множество методик. Важнейшими из них являются спирография, общая плетизмография, определение газов и кислотно-основного состояния крови.

Спирография состоит в графической регистрации дыхательных движений, которые отражают изменения объема легких во времени. В процессе спирографии может быть осуществлена и проба Вотчала-Тиффно для оценки трахеобронхиальной проходимости. Она заключается в определении объема воздуха, выдыхаемого больным за первую секунду форсированного выдоха после максимального вдоха (в норме не менее 70 %). В настоящее время спирографию с оценкой многих показателей функций внешнего дыхания (ФВД) производят на компьютеризированных аппаратах, позволяющих сделать исследование более простым, быстрым, не обременительным для пациента, с незамедлительным получением цифровых показателей. Общая плетизмография основана на использовании барометрического принципа. Ее осуществляют в плетизмографе тела - большой герметичной камере с постоянным объемом.
Пациента помещают в плетизмограф и регистрируют изменения объема грудной клетки во время дыхания. Плетизмография позволяет оценить растяжимость легких, сопротивление дыхательных путей потоку воздуха в условиях спокойного дыхания, рассчитать работу дыхания.

Интегральными показателями функции внешнего дыхания являются газовый состав и кислотно-основное состояние крови. При дыхательной недостаточности нормальный газовый состав крови не обеспечивается или достигается повышенной работой дыхания. Следовательно, определения газового состава крови и работы дыхания в покое и при дозированной нагрузке обычно достаточно для ответа на вопрос об отсутствии или наличии дыхательной недостаточности. При выявлении дыхательной недостаточности проводят разграничение ее рестриктивного и обструктивного типа. Рестриктивный тип обусловлен ограничением вентиляции и легочного газообмена вследствие уменьшения объема функционирующей легочной ткани, ограничения подвижности ребер, слабости дыхательных мышц, Рубцовых изменений плевры, а обструктивный - нарушением проходимости дыхательных путей.
Во многих случаях оба типа сочетаются, в связи с чем говорят о преобладании того или иного типа дыхательной недостаточности.

Нарушения деятельности сердечно-сосудистой системы при туберкулезе легких обусловлены главным образом туберкулезной интоксикацией и гипертензией в малом круге кровообращения. При электрокардиографическом исследовании интоксикация проявляется синусовой тахикардией, снижением зубца Т, нарушениями возбудимости и проводимости. Изменения в сердце, вызванные перегрузкой правого желудочка и его гипертрофией, на ЭКГ чаще выявляют при физической нагрузке в виде увеличения зубца Р во II и III отведениях с одновременным снижением зубца Т и уменьшением интервала S-T. Однако ЭКГ не всегда позволяет выявить легочную гипертензию и гипертрофию правого желудочка. Значительно большую информацию дает эхокардиография - с ее помощью можно количественно оценить состояние камер сердца и толщину их стенок..

В этом разделе описываются важнейшие величины измерений, значение которых дает возможность окончательно дифференцировать формы шока и обеспечить проведение целенаправленной терапии. К ним относятся:

  • - измерение центрального венозного давления (ЦВД);
  • - измерение артериального давления кровавым способом (АОД);
  • - измерение давления в легочной артерии (ДЛА);
  • - определение минутного объема сердца (МОС).

Измерение центрального венозного давления

Данные об информативности и достоверности центрального венозного давления (ЦВД) подробно изложены в предыдущих разделах. Здесь опишем определение ЦВД в клинике.

Для получения достоверных величин измерения конец сосудистого катетера должен находиться в системе полых вен, не имеющих клапанов, и располагаться лучше всего на 2-3 см выше правого предсердия. Правильность положения катетера проверяют до начала измерения при рентгеноскопии. Для установки нулевого уровня больному придают горизонтальное положение и сагиттальный диаметр грудной клетки делят на высоте середины грудины на 2/5 и 3/5. Нулевая точка соответствует уровню правого предсердия и находится на 3/5 диаметра грудной клетки выше горизонтальной плоскости, на которой размещен больной (рис. 3.15). Эту точку обозначают на коже больного и совмещают с точкой нуля измерительной шкалы венотонометра. Набор для определения венозного давления состоит из измерительного колена, соединенного через трехходовой кран с прибором для инфузии. Для заполнения измерительной системы не следует использовать гиперосмолярные инфузионные растворы, так как они не дают точных величин измерения. После заполнения измерительного колена трехходовой кран устанавливают так, что возможен свободный проток жидкости от измерительной системы к катетеру. Высота столба жидкости уменьшается до уровня давления в центральной венозной системе. Правильность подключения прибора определяют по колебаниям столба жидкости в измерительном колене, синхронными с дыханием. Ошибки при измерении ЦВД касаются чаще всего одного или нескольких следующих моментов:

  • - по сосудистому катетеру нет обратного тока;
  • - неправильное положение больного (точка нуля не совпадает с уровнем предсердия);
  • - больной кашляет или напрягается;
  • - внутригрудное давление повышено из-за дыхания под избыточным давлением;
  • - в измерительную систему попали пузырьки воздуха.

Измерение артериального давления кровавым способом

При шоке с централизацией кровообращения измерения артериального давления при помощи манжетки на плече по методу Рива-Роччи неточно, поэтому предпочтение должно быть отдано кровавому способу измерения артериального давления. Для этого в a. radialis , a. brachialis или a. femoralis вводят металлическую или пластиковую канюлю. Для кратковременных измерений лучше подходят металлические или пластиковые канюли. При необходимости измерения и регистрации артериального давления в течение длительного времени рекомендуется проведение тефлонового катетера через a. femoralis в аорту.

Подготовка больного:

  • - горизонтальное положение;
  • - бритье паховой области;
  • - двукратная обработка (дезинфекция) паховой области.

Подготовка рабочего стола со стерильной укладкой.

На столе находятся подготовленные к работе:

  • - тефлоновые катетеры,
  • - направляющий проводник,
  • - катетер или пластиковая муфта для расширения сосуда,
  • - набор для пункции по Сельдингеру,
  • - соединительные элементы,
  • - трехходовые краны,
  • - раствор для промывания (0,9% NaCl),
  • - шприцы одноразового пользования,
  • - подготовленные к измерению элементы Статама, заполненные 0,9% раствором NaCl, не содержащие пузырьков воздуха.

Элементы Статама (рис. 3.16) - это преобразователи давления, преобразующие механические волны давления в электрические сигналы. В результате появляется возможность записать уровень давления и отобразить кривые давления в записи на экране или на бумажной ленте. Для передачи волны давления без затухания (рис. 3.17) преобразователь должен быть полностью свободен от воздуха и заполнен изотоническим раствором хлорида натрия. Так как мембрана восприятия давления высокочувствительна, заполнять элемент Статама следует с чрезвычайной осторожностью.

Пункция и введение катетера : после обработки операционного поля, местной анестезии и повторной обработки поля в стерильных условиях пунктируют a. femoralis иглой Сельдингера, из иглы удаляют мандрен и через просвет ее проводят проволочный проводник в аорту. Иглу Сельдингера удаляют и после расширения сосуда в месте пункции тефлоновый катетер по проводнику проводят в аорту. После извлечения проводника катетер необходимо промыть и проверить его свободную проходимость. С помощью соединительной трубки катетер подсоединяют к элементу Статама; одновременно с этим на экране появляется изображение кривой давления. Перед началом измерения у больного находят точку нуля. Она находится как раз на уровне правого предсердия как при измерении ЦВД (см. рис. 3.14). Затем элемент Статама фиксируют в нулевой позиции и проводят уравновешивание с нулем измерительного прибора. С этой целью трехходовый кран на элементе Статама устанавливают так, что на мембрану может воздействовать давление воздуха. После градуировки (поверки) прибора волна давления проводится из артерии на элемент Статама и таким образом измеряется и регистрируется систолическое и диастолическое давление в аорте.

Измерения с помощью термистора-катетера Сван-Ганца

Проведение катетера и измерение давления . Другие показатели гемоциркуляции, учет которых важен при-лечении шока, могут быть измерены с помощью термистора-катетера Сван-Ганца (рис. 3.18). Он представляет собой трехпросветный катетер с вмонтированным на конце термоизмерительным зондом. При помощи такого катетера можно производить измерения ЦВД, давления в легочной артерии и МОС. Для введения термистора-катетера Сван-Ганца необходима венесекция. Следует выполнить все требования подготовки к венесекции. Дополнительно должны быть подготовлены:

  • - термистор-катетер Сван-Ганца, термоизмерительный зонд (должно быть проверено нормальное их функционирование) ;
  • - соединительные устройства;
  • - трехходовые краны;
  • - жидкость для промывания (0,9% NaCl);
  • - 10-миллилитровый шприц, одноразового пользования;
  • - элемент Статама, свободный от воздуха, заполненный 0,9% раствором NaCl.

Работу термистора можно проверить простым способом: согревают термоизмерительный зонд в руке и отмечают на измерительной шкале подъем температуры. Для введения катетера производят венесекцию и через с. basilica проводят катетер в v. cava superior . После подсоединения катетера к элементу Статама по кривой давления на осциллоскопе можно установить позицию конца катетера и таким образом контролировать дальнейшее продвижение катетера (рис. 3.19).

По достижении cava superior баллончик на конце катетера заполняется воздухом и покрывает кончик катетера. Благодаря этому удается избежать нарушений сердечного ритма и катетер в большинстве случаев довольно легко проводится через правое предсердие и правый желудочек в a. pulmonalis . Баллончик на конце мягко-то катетера уносится током крови и, минуя клапаны сердца, попадает в легочную артерию. При правильном положении катетера (рис. 3.20) один его просвет приходится на правое предсердие, а отверстие на конце, как и термисторная часть, находится в легочной артерии. Необходимо провести градуировку (поверку) указателя давления и приступить к измерению и регистрации давления в легочной артерии. Давление в правом предсердии соответствует ЦВД. Оно может быть измерено с помощью другого элемента Статама или через обычную систему гибкой пластиковой трубки с вено-тонометром.

Измерение минутного объема сердца (МОС). В этом разделе описывается методика определения МОС по принципу холодового разведения. Термоизмерительный зонд, находящийся на конце катетера Сван-Ганца, посредством провода соединяют с прибором для измерения МОС. С этой целью употребляют 10 мл 5% раствора левулезы или 0,9% раствора хлорида натрия температуры от 1 до 5° С при комнатной температуре. В зависимости от конструкции прибора температуру инъецируемого раствора измеряют отдельным термоизмерительным зондом. Холодный раствор быстро и равномерно вводят в правое предсердие, где он смешивается с протекающей кровью.

Вызванное тем самым снижение температуры крови фиксируется термоизмерительным зондом на конце катетера в легочной артерии и На измерительный прибор передается разница температур, необходимая для расчета МОС. Проще говоря, метод холодового разведения заключается в следующем. Если регистрируемое снижение температуры в легочной артерии велико, то количество крови, протекавшее через правое сердце во время инъекции, было малым и МОС соответственно был низким. Если, напротив, падение температуры незначительно, то количество протекавшей крови - велико и МОС больше. Чтобы достигнуть удовлетворительной точности измерения, следует всегда производить одним и тем же лицом троекратные, следующие друг за другом измерения и по полученным данным рассчитывать среднюю величину.

Контроль в течение длительного времени

Термистор-катетер Сван-Ганца и находящийся в аорте тефлоновый катетер можно при надлежащем уходе оставить на несколько дней.

Для обеспечения безупречной проходимости катетеров их следует постоянно промывать по принципу противотока. Для этой цели больше всего подходят перфузоры многократного использования. Они оснащены тремя перфузорными шприцами, смонтированными на одном креплении. Это делает возможным все три просвета катетера держать открытыми (рис. 3.21). К промывной жидкости добавляют гепарин (50 мл 0,9% раствора NaCl и 1000 ED гепарина на период перфузии 10 ч). С помощью одной системы таким способом можно промыть все отверстия катетеров. Однопросветный катетер может быть промыт под давлением из флакона для инфузии (рис. 3.22). Для получения точных данных измерения необходимы промывание катетеров 5-10 мл 0,9% раствором хлорида натрия с промежутками 2-4 ч и корректировка нуля на приборе измерения давления.

Место пункции и область раны после венесекции следует осматривать ежедневно и в стерильных условиях менять повязки. Катетер фиксируют полосками липкого пластыря или швами для предотвращения его выскальзывания. При надежной фиксации катетера и при достаточной длине соединительных трубок с элементом Статмана весь уход за больным можно осуществлять без особых затруднений. Для безопасности катетер должен быть снабжен надписью: «Никаких инъекций!».


Основная цель мониторинга гемодинамики - получить информацию, характеризующую доставку и потребление кислорода в тканях. Мониторинг позволяет создать оптимальные условия для поддержания адекватной органной перфузии, а также как можно раньше выявить и предупредить осложнения агрессивных методов терапии. Современные тенденции развития мониторинга включают снижение его инвазивности, комплексный подход к оценке гемодинамики на базе выделения блоков гемодинамических показателей, дискретно характеризующих преднагрузку, сократительную функцию миокарда, постнагрузку и чувствитель-ность к инфузионной нагрузке, а также выработку алгоритмов «целенаправлен-ной» терапии.
Следует отметить, что гемодинамические параметры составляют практически половину всех компонентов Гарвардского стандарта мониторинга, который служит регламентирующей основой для проведения анестезиологического пособия (табл. 5-1). При проведении интенсивной терапии решение о применении того или иного вида мониторинга кровообращения основано на сбалансированной оценке ряда факторов, включая быстроту получения и ожидаемую ценность данных, сложность представляемых для интерпретации показателей, подготовку персонала, специфический риск мониторинга и т.д. Основные принципы современного мониторинга - точность, надёжность, возможность динамической (непрерывной) оценки основных характеристик кровообращения, комплексность, минимальный риск специфичных осложнений, практичность и дешевизна.
556ИНТЕНСИВНАЯ ТЕРАПИЯ
Таблица 5-1. Гарвардский стандарт мониторинга
Постоянная ЭКГ
АД и пульс (каждые 5 мин)
Вентиляция (минимум один из параметров):
пальпация или наблюдение за дыхательным мешком;
аускультация дыхательных шумов;
капнометрия или капнография;
мониторинг газов крови;
мониторинг выдыхаемого потока газов
Кровообращение (минимум один из параметров): пальпация пульса; аускультация сердечных тонов; кривая АД; пульсоксиметрия
Дыхание (аудиосигнал тревоги для контроля дисконнекции дыхательного контура)
Кислород (аудиосигнал тревоги для контроля нижнего предела концентрации на вдохе)
С определённой долей условности можно выделить инвазивные (требующие катетеризации сосудистого русла) и неинвазивные методы мониторинга кровообращения. Обе группы методов, в свою очередь, могут быть направлены преимущественно на измерение показателей системной и/или лёгочной гемодинамики. Мониторинг может быть перемежающимся (статическим) или постоянным (динамическим). Возможно непосредственное измерение гемодинамических параметров или их опосредованное вычисление путём математической обработки сигнала.
ЭЛЕКТРОКАРДИОГРАФИЯ
ЭКГ - самостоятельный метод диагностики нарушений сердечного ритма и проводимости. Обеспечивая непрерывное измерение частоты и ритма сокращения сердца/желудочков, метод, однако, имеет лишь вспомогательное значение в диагностике ишемии миокарда и эффектов назначаемых препаратов. Для оценки ритма наиболее часто используют II стандартное отведение. Сочетание II отведе-ния с левыми грудными отведениями (отведение У5) повышает чувствительность диагностики ишемических изменений сегмента 5Т до 96%. Многие современные мониторы автоматически измеряют динамику сегмента 5Т и выводят тренды, характеризующие выраженность ЭКГ-признаков ишемии. Инвазивный (внутри- сердечный) мониторинг ЭКГ можно использовать, чтобы подтверждать правиль-ность положения центральных венозных катетеров (ЦВК), проводить кардиости-муляцию и ангиохирургические вмешательства, направленные на лечение стойких нарушений сердечного ритма.
НАСЫЩЕНИЕ (САТУРАЦИЯ) ГЕМОГЛОБИНА КИСЛОРОДОМ
Измерение насыщения (сатурация, 502 или ЗаЮ2) крови кислородом основано на том, что оценивается степень поглощения проходящего или отражённого света определённой длины волны. Сатурация артериальной крови ($02), как правило, измеряется неинвазивным путём (пульсоксиметрия) и в большей степени характеризует вклад внешнего дыхания в доставку кислорода (002). Инвазивное измерение За02 возможно при заборе образца артериальной крови или путём установки артериального фиброоптического катетера (артериальная оксиметрия). В основе пульсоксиметрии лежат принципы оксиметрии и плетизмографии. За счёт различной способности оксигемоглобина и дезоксигемоглобина абсорбировать лучи красного и инфракрасного спектра пульсоксиметрия изолированно оценивает поглощение света пульсирующим (артериальным) компонентом кро-вотока. Пульсоксиметры позволяют осуществлять постоянное измерение ЧСС и демонстрируют на дисплее плетизмограмму, отражающую наполнение капилляров и состояние микроциркуляторного русла. Информативность пульс-оксиметрии значительно снижается при расстройствах периферической циркуляции (шок) и неконтролируемых движениях пациента. Уменьшение сатурации не следует однозначно рассматривать как признак нарушения оксигенации: для уточнения диагноза необходимо выполнить анализ газового состава артериальной крови.
Измерение сатурации кислородом смешанной (в лёгочной артерии, Зу02) и центральной (как правило, в бассейне верхней полой вены, Зсу02) венозной крови позволяет оценить баланс между доставкой и потреблением 02. Для измерения сатурации смешанной венозной крови необходимо установить катетер в лёгочную артерию или верхнюю полую вену. При комплексной интерпретации результатов венозной оксиметрии вместе с прочими гемодинамическими параметрами дифференцированное и направленное применение методов терапии, включающих инотропную/вазопрессорную поддержку, инфузионную терапию и/или повышение уровня гемоглобина, может улучшить исход заболевания. Нормальное значение сатурации артериальной крови составляет 95-100%, значение венозной - 65-80%.
Неинвазивная оксиметрия головного мозга даёт возможность определить регионарное насыщение гемоглобина кислородом в мозге (г302, в норме приблизительно 70%). Доказано, что при остановке кровообращения, эмболии сосудов головного мозга, гипоксии и гипотермии происходит выраженное снижение г302. Определение Зу02 крови, полученной при пункции верхней луковицы яремной вены, позволяет оценить потребление кислорода головным мозгом.
СТАТИЧЕСКОЕ ГЕМОДИНАМИЧЕСКОЕ ДАВЛЕНИЕ Измерение системного артериального давитмш
Выбор методики и частоты измерения АД определяется состоянием больного и тяжестью хирургического вмешательства. При стабильной гемодинамике, как правило, достаточно неинвазивного измерения АД, предпочтительно аппаратным способом. Неинвазивное измерение АД основано на аускультативном (тоны Короткова) и осциллометрическом (колебания давления в манжете) методах. Инвазивное измерение АД рекомендуют в следующих случаях:
быстрое изменение клинической ситуации у пациентов ОРИТ (шок, острое повреждение лёгких, СЛР и прочие критические состояния);
® применение вазоактивных препаратов (инотропы, вазопрессоры, вазодилата- торы, анестетики, антиаритмики и др.);
высокотравматичные хирургические вмешательства (кардиохирургия, нейрохирургия, торакальная хирургия и др.);
необходимость в частом заборе артериальной крови (определение газового состава и другие лабораторные исследования).
Инвазивный мониторинг АД осуществляют с помощью катетеризации магистральной артерии: чаще лучевой или бедренной, реже плечевой, подмышечной или артерии тыла стопы (рис. 5-10).
Основная цель лечебных мероприятий на основе мониторинга АД - под-держать среднее АД, отражающее перфузионное давление в различных органах. В соответствии с последними рекомендациями, среднее АД при шоковых состоя-ниях должно поддерживаться на уровне выше 65 мм рт.ст., за исключением слу-чаев травматического кровотечения (40 мм рт.ст. до тех пор, пока не выполнен хирургический гемостаз) и черепно-мозговой травмы (90 мм рт.ст.).
Кроме статического анализа давлений при инвазивном мониторинге АД возможен также опосредованный анализ сократимости миокарда, основанный на построении касательной к отрезку артериальной кривой при максимальной скорости роста давления - ёР/сК или АРтах (см. рис. 5-10).
СЛ
сл
00
Все системы прямого измерения АД создают артефакты, которые обусловлены неадекватными соединениями в системе или положением катетера, избыточным или недостаточным демпфирующим эффектом системы, попаданием в неё пузырьков воздуха, дрейфом нуля и прочими факторами (см. рис. 5-10).
Центральное венозное давление/давление в правое предсердии
ЦВД - «суррогатный» маркёр преднагрузки на правый желудочек. Ключевые показания к мониторингу ЦВД - острая сердечная недостаточность и шок. Катетеризацию верхней полой вены проводят практически всем пациентам ОРИТ. Нормальные значения ЦВД составляют 4-9 мм рт.ст. (5-12 см вод.ст.), что приблизительно соответствует давлению в правом предсердии (ДПП) и лишь приблизительно отражает КДО правого желудочка (преднагрузка) и преднагрузку на правые отделы сердца. У здоровых людей, как правило, работа правого и левого желудочков изменяется параллельно, поэтому ЦВД также косвенно отражает заполнение левого желудочка.
ЦВД и ДПП определяются тонусом венозного русла, ОЦК, внутриплевраль- ным давлением, комплайнсом правых отделов сердца, давлением в лёгочной артерии, функцией трикуспидального клапана и др. Существует ряд физиологических и патологических факторов, повышающих ЦВД вне прямой связи с ростом преднагрузки на сердце. Определённую информацию можно получить и при оценке формы кривой ЦВД, соответствующей процессу сердечного сокращения (рис. 5-11). В условиях шока и острого повреждения лёгких ЦВД и ДПП не коррелируют с внутригрудным объёмом крови и степенью ОЛ.
Согласительная конференция, посвящённая гемодинамическому мониторингу при шоке (Париж, 2006), не рекомендует оценивать ответ на инфузионную нагрузку на основании только лишь маркёров преднагрузки (ЦВД/ДПП) и ДЗЛК, тем не менее при шоке и низких значениях статических маркёров преднагрузки (ЦВД/ ДПП Давление в лёгочной артерии и давление заклинивания лёгочной артерии
Измерение ДЛА и ДЗЛК обычно осуществляют инвазивно, устанавливая баллонный флотационный катетер Сван-Ганца в лёгочную артерию (рис. 5-12).
Можно проводить неинвазивное опосредованное определение ДЛА, измеряя скорость кровотока в лёгочной артерии с помощью допплерографии. Катетер Сван-Ганца устанавливают через магистральный (чаще яремная или подключичная вена) или периферический венозный доступ с использованием специального венозного интродьюсера. Находящийся на кончике катетера баллончик раздувают воздухом или С02, и он, следуя направлению кровотока, увлекает за собой катетер, который устанавливают в лёгочную артерию под контролем давления в различных отделах малого круга кровообращения (см. рис. 5-12).
Катетеризация лёгочной артерии открывает путь к регистрации ряда важных гемодинамических параметров: ЦВД, ДПП, систолического, диастолического и среднего ДЛА, ДЗЛА, О ДЛА, ДЗЛК, Зу02, а также (во многих моделях катетера Сван-Ганца) - СВ (табл. 5-2).
При определённой модификации (подогреваемый элемент и фиброоптический источник/проводник света и др.) СВ и Зу02 можно регистрировать непрерывно. Раздутие баллона на кончике катетера ведёт к «заклиниванию» лёгочной артерии, при этом результирующее давление, регистрируемое дистальнее баллона, отражает конечно-дистолическое давление в лёгочных венах, которое лишь приблизительно характеризует давление в левом предсердии и преднагрузку на левый желудочек.

Повышение ЦВД/ДПП
Правожелудочковая
недостаточность
Пороки сердца
Г иперволемия
Тромбоэмболия легочной артерии
Легочная гипертензия
Тампонада сердца
Увеличение внутри грудного давления при ИВЛ (ПДКВ), гемо- и пневмотораксе, ХОБЛ
Повышение внутри брюшного давления при парезе ЖКТ, беременности, асците
Повышение сосудистого тонуса при симпатической стимуляции, введении вазопрессорных или инотропных препаратов

Таблица 5-2. Основные гемодинамические показатели и расчётные величины Показатель Расчёт/комментарии Нормальные значения Статическое давление АД Систолическое АД (АДмит) 90-140 мм рт.ст. Диастолическое АД (АДшмгт) 60-90 мм рт.ст. Среднее АД (АДгп) (АД, + 2ХАД_т)/3 70-105 мм рт.ст. ЦВД - 4-9 мм рт.ст. Давление в лёгочной артерии (ДЛА) Систолическое ДЛА (ДЛАигт) 15-25 мм рт.ст. Диастолическое ДЛА (ДЛАпияг7) 8-15 мм рт.ст. Среднее ДЛА (ДЛАг,) (ДЛА_ + 2 х ДЛА ]иагт)/3 10-20 мм рт.ст. Давление заклинивания легочных капилляров - 6-12 мм рт.ст.
Динамические параметры (чувствительность к инфузионной нагрузке) Вариабельность систолического давления АД максимальное-АД мини-
""СИС1 ^СИСТ...1.МКП МИН.7" Г Сердечный выброс и производные показатели Сердечный выброс (СВ) ЧСС х УО/ЮОО 4,0-8,0 л/мин Сердечный индекс (СИ) СВ/3 тела 2,5-4,0 л/(минхм2) Ударный объем (УО) СВ/ЧССх 1000 60-100 мл Ударный индекс (УИ) СИ/ЧСС х 1000 35-60 мл/м2 ОПСС 79,9 х (АДгп - ДПП)/СВ 80-1200 динхс/см5 Индекс ОПСС 79,9х(АДгп - ДПП)/СИ 80-1200 динхс/(см5хм2) Легочное сосудистое сопротивление 79,9 х (ДЛА п - ДЗЛК)/СВ Волюметрические показатели Индекс глобального конечнодиастолического объёма (ИГКДО) ИВГТО - ИЛОК = (СИ х МТ1) - (СИ х 031) 680-800 мл/м2 Индекс внутригрудного объема крови 1,25 х ИГКДО 800-1000 мл/м2 (ИВГОК) Индекс внесосудистой воды лёгких (ВГТО - ВГОК)/М тела 3-7 мл/кг (ИВСВЛ) Примечания. 5 тела - площадь тела, М тела - масса тела, ЧСС - частота сердечных сокращений, ИВГТО - индекс внутригрудного термального объёма (СИ х МТ1), ИЛОК - индекс лёгочного объёма крови.
Следует помнить, что истинный маркёр преднагрузки - КДО левого предсердия, связь которого с давлением варьирует в зависимости от ряда условий. Как и при регистрации ЦВД, здесь действует правило «давление - это ещё не объём». Кроме того, ОДЛА адекватно отражает конечно-диастолическое давление в левом предсердии лишь тогда, когда катетер находится в сосудах третьей перфузионной зоны Веста (рис. 5-13). Следует различать давление заклинивания лёгочной артерии
(ДЗЛА), окклюзионное давление лёгочной артерии (ОДЛА) и давление заклинивания лёгочных капилляров (ДЗЛК). О ДЛА измеряют при раздутом баллоне, оно соответствует давлению в левом предсердии. ДЗЛА измеряют при окклюзии лёгочной артерии катетером Сван-Ганца с нераздутым баллоном. ДЗЛА в большей степени характеризует давление в лёгочных венах. ДЗЛК рассчитывают математически на основании ОДЛА и ДЗЛА. Оно соответствует давлению в лёгочных капиллярах.
В последние годы катетер Сван-Ганца утратил прежнюю популярность, поскольку ряд исследований продемонстрировал, что его использование не только не оказывает положительного влияния на клинический исход, но даже может увеличивать частоту осложнений и повышать летальность. Выяснилось, что применение катетера Сван-Ганца у пациентов с застойной сердечной недостаточностью при крайне рискованных вмешательствах и остром повреждении лёгких не даёт ощутимых преимуществ.
На сегодняшний день катетеризация лёгочной артерии уже не используется в качестве основного метода измерения СВ, и её всё активнее вытесняют менее инвазивные исследования, в частности транспульмональная термодилюция. Нельзя рекомендовать изолированное измерение ОДЛА для прогнозирования ответа на инфузионную нагрузку при шоке.
Установку катетера Сван-Ганца сопровождает рост частоты аритмий, тромбоэмболических, а иногда и инфекционных осложнений. Наиболее опасные осложнения - узлообразование катетера, сепсис, полная блокада и перфорация сердца, разрыв лёгочной артерии. Использование катетера Сван-Ганца абсолютно противопоказано при полной блокаде правой ножки пучка Гиса (может развиться полная блокада сердца), а также при непереносимости латекса, если последний входит в состав баллона.
Несмотря на то что в современных обзорах катетеризацию лёгочной артерии нередко характеризуют как «высокоинвазивный» метод мониторинга, он сохраняет своё значение при кардиохирургических вмешательствах, у пациентов ОРИТ с выраженной лёгочной гипертензией и, несомненно, в современных научных исследованиях.
СЕРДЕЧНЫЙ ВЫБРОС
СВ - результирующая величина, определяемая пред-, постнагрузкой, миокардиальной сократимостью, ЧСС и функцией клапанного аппарата сердца. Ряд показателей, лишь относительно характеризующих преднагрузку (ЦВД, ОДЛА), частично утрачивает своё значение при непосредственном и особенно при непрерывном измерении СВ. Наряду с концентрацией гемоглобина и 5а02 СВ - один из основных показателей, определяющих доставку кислорода к органам. В то время как первые две переменные относительно стабильны и легко могут быть скорри- гированы, измерение СВ может давать значимые преимущества в поддержании системной доставки кислорода. В наши дни для измерения СВ доступен широкий спектр инвазивных и неинвазивных методов (рис. 5-14).
Инвазивные методы (дискретное и непрерывное измерение)
Препульмональная термодилюция подразумевает использование термистор- ного катетера Сван-Ганца. Для расчёта СВ используют метод Стюарта-Гамильтона, основанный на определении площади термодилюционной кривой (рис. 5-15).

Методы измерения сердечного выброса

Рис. 5-14. Методы измерения сердечного выброса. СВ - сердечный выброс.

Болюсное введение в правое предсердие раствора, охлаждённого (При одновременном использовании препульмональной и транспульмональной термодилюции кроме статических давлений возможно измерение объёма правого и левого отдела сердца, а также ФВ правого желудочка. Наряду с этим катетеризация лёгочной артерии позволяет рассчитать индексы, отражающие работу правого и левого желудочка, а также содержание, транспорт и потребление кислорода.
Траеспульмоеальеая дилюция индикатора также основана на методе Стюарта-Гамильтона, но с определением температуры крови (концентрации индикатора) в магистральной системной артерии. Индикатор проходит через все отделы сердца, лёгочное сосудистое русло и аорту, а не только через правые отделы сердца, как при катетеризации лёгочной артерии. Преимущество этой методики перед препульмональной термодилюцией состоит в измерении ряда дополнительных объёмных (волемических) параметров на основании углублённого анализа дилюционной кривой. В последние годы изолированная транспульмональная тер- модилюция практически заместила метод транспульмональной термохромодилю- ции, основанный на одновременном введении индикатора-красителя, и активно конкурирует с препульмональной термодилюцией.
Непрерывное измерение СВ («с каждым ударом сердца», «ЪеаМо-Ьеа1») основано на анализе изменений формы и площади пульсовой волны, комплайнса артериального русла/аорты, ЧСС, АД и других факторов (рис. 5-16). Метод реализован в ряде современных технологий.
® Технология Р1ССО (Р1ССОр1ш). Повторная калибровка путём транспульмональной термодилюции необходима каждые 4-6 ч. Катетер устанавливают в магистральную (например, в бедренную) артерию.
Технология Ри1$еСО (1ЛЙСО). Калибровка путём транспульмональной термодилюции хлорида лития (ЫС1) необходима каждые 8 ч. Катетер можно устанавливать в периферическую (лучевую) артерию.
Технология ССО (У1%Иапсе 1-11). Используется специальный КСГ с нагре-ваемым элементом (филамент). Также возможно непрерывное измерение КДО сердца и Зу02.

Вариабельность систолического давления (ВСД / ЗР\/) = АДСИСТ макс - АД0ИСТ мин (за 1 дыхательный цикл) Вариабельность пульсового давления (ВПД / РРУ) = (АДпульс макс + АДпульс мин) / АДпульс сред Вариабельность ударного объёма (ВУО / 3\А/) = (УОмакс + У0МИН) / УОсред
Непрерывный расчет сердечного выброса (принцип Кети-Шмидта)

Технология РКАМ (ргеззиге гесогйгщ апа1уЫса1 теХкос!). Предварительной калибровки не требуется.
Технология СОШАУЕР1о\уТгаск™ (Уг#г7ео). Предварительной калибровки не требуется. Возможно значимое занижение СВ по сравнению с эталонным измерением при помощи препульмональной термодилюции.
Ультразвуковая допплерография за счёт измерения линейной скорости кровотока в аорте позволяет определить УО, СВ и постнагрузку. Наиболее распространена чреспищеводная допплерография с помощью технологии ОеНех. Метод характеризуется неинвазивностью и быстротой в получении параметров, однако его результаты во многом приблизительны и зависят от положения датчика в пищеводе.
Неинеазивные методы измерения сердечного выброса
По точности и эффективности все неинвазивные методы уступают термодилю- ционным. В настоящее время существует два основных метода для непрерывного и дискретного неинвазивного определения СВ.
Модифицированный анализ содержания С02 в конце выдоха (N100, «рагНаI С02 геЪгеаШ炙) - неинвазивная модификация метода Фика. Метод недостаточно точен и зависит от показателей вентиляции и газообмена.
Импедансная кардиография (1СС, Вю2, ЫАЗА, США) грудной клетки с помощью специальных электродов в точке сердечного цикла, соответствующей деполяризации желудочков, также даёт возможность оценить СВ, УО и общее периферическое сопротивление. Метод чувствителен к электрической интерференции и правильности наложения электродов. Точность биоимпе- дансометрии сомнительна в критических состояниях (ОЛ, шок, объёмная перегрузка и др.).
Косвенно об адекватности измеренного СВ потребностям тканей в 02 можно судить по градиенту между центральной и периферической температурой (в норме 1 мл/(кгхч)], концентрации лактата, данным желудочной тонометрии, сублингвальной капнографии, ортогональной поляризационной спектральной визуализации кровотока, а также по Зх02 или Зсу02. Однако, за исключением определения лактата, вопрос о необходимости рутинного использо-вания этих методов при шоковых состояниях остаётся открытым.
ДИНАМИЧЕСКИЙ МОНИТОРИНГ И ОЦЕНКА ОТВЕТА НА ИНФУЗИОННУЮ ТЕРАПИЮ
Методы так называемого динамического мониторинга используются для оценки волемического статуса пациента, в частности для выявления гиповолемии, прогнозирования эффекта инфузионной терапии на преднагрузку и СВ фиШ гезропФепезз), а также для контроля за проводимой терапией. В рамках динамического мониторинга описаны разнообразные тесты, позволяющие оценить ряд параметров (см. рис. 5-16, см. табл. 5-2).
Вариабельность систолического давления - разность между максимальным (достигается сразу после начала аппаратного вдоха) и минимальным (к окон-чанию вдоха) систолическим АД в течение одной респираторной фазы.
Вариабельность пульсового давления - изменения пульсового давления (в %), средняя разность между наивысшим и наименьшим его значением за последние 30 с.
Вариабельность ударного объёма - изменения УО (в %), среднее значение разности между наивысшим и наименьшим его показателем за последние 30 с.
К прочим показателям относят также пульс-оксиметрию с оценкой формы плетизмографической волны, изменение диаметра полых вен, динамику скорости аортального кровотока и длительность периода, предшествующего изгнанию.
Применяют такие пробы, как респираторный тест на вариабельность систолического давления (КЗУТ-тест) и тест с подниманием ног. Вышеперечисленные показатели и тесты информативны только в тех случаях, когда сохраняется синусовый ритм и полностью отсутствуют попытки спонтанного дыхания (ИВЛ).
Динамические изменения ЦВД также более информативны, чем статические повторные измерения, как и при измерении АД, существуют тесты, позволяющие по вариабельности ЦВД прогнозировать реакцию СВ на инфузионную нагрузку и потребность в ней. Описана динамическая реакция ЦВД на спонтанный вдох пациента или на принудительное создание положительного давления в дыхательных путях.
ВОЛЮМЕТРИЧЕСКИЙ (ОБЪЁМНЫЙ) МОНИТОРИНГ Инвазивные методы
В настоящее время инвазивный волюметрический мониторинг основан на рассмотренных выше методах препульмональной и транспульмональной термо- дилюции. Следует отметить, что последний подход завоёвывает всё большую популярность, что связано с работами, говорящими о нецелесообразности рутинного применения катетера Сван-Ганца. Основные волюметрические параметры - производные величины, расчёт которых основан на анализе кривой разведения индикатора. Один из наиболее точных методов волюметрического мониторинга - термохромодилюция (метод «парного индикатора»), основанный на дилюции диффундирующего (выходящего за пределы сосудистого русла - охлаждённый раствор) и недиффундирующего (не покидающего сосудистого русла - раствор красителя) индикаторов. Хотя этот метод стал основой для разработки упрощённой изолированной транспульмональной термодилюции, его применение в настоящее время крайне ограничено. Углублённый анализ термодилюционной кривой основан на расчёте среднего времени прохождения индикатора (МТ1;) и времени нисходящей части кривой (Б51:). Одновременный расчёт СВ, МТг и В51; позволяет определить волюметрические показатели (рис. 5-17).
Наиболее важные волюметрические показатели (см. табл. 5-2) - глобальная фракция изгнания (ГФИ, СЕР), глобальный конечно-диастолический объём (ГКДО, СЕБУ), внутригрудной объём крови (ВГОК, ГГВУ) и внесосудистая вода лёгких (ВСВЛ, ЕУЬШ). В настоящее время ГКДО и ВГОК считают наиболее точ-
1п с(1) е 1 У У * А* 051: МТ1
А*, время появления дилюционной кривой (Арреагапсе йте]
МП, среднее время прохождения кривой (Меап ТгапзИ: йте)
034, время экспоненциально убывающей части кривой (0о\д/п-81оре Ите)
Термохромодилюция ОсНОВНЫв ВОЛЮМвТрИЧеСКИв Изолированная ГОШ) показатели термодилюция (ИТД)
ВГТО = СВ х МТ1 КДОЛП КДОПЖКДОЛП кдолж ВГТО = СВ хМТ1
ными и воспроизводимыми из доступных маркёров преднагрузки. Основанная на ГКДО оптимизация терапии кардиохирургических пациентов сопровождается уменьшением потребности в вазопрессорной и инотропной терапии, меньшей продолжительностью ИВЛ и сокращением сроков пребывания в ОРИТ.
Измерение внесосудистой воды лёгких
Количественная оценка содержания жидкости в лёгких признана клинически важным методом мониторинга. Показатель ВСВЛ отражает проницаемость лёгочного сосудистого русла, что косвенно характеризует глобальную прони-цаемость эндотелия на фоне «синдрома капиллярной утечки». Одновременная оценка жидкостного баланса лёгких и преднагрузки на сердце служит основой для сбалансированного проведения инфузионной и респираторной терапии, а также для назначения препаратов катехоламинового ряда или диуретиков паци-ентам ОРИТ.
В наши дни для измерения ВСВЛ наиболее широко используют метод транспульмональной термодилюции (см. рис. 5-17). В сравнении с катетером Сван- Ганца, динамическое измерение ВСВЛ с надлежащей коррекцией терапии позволяет сократить продолжительность респираторной поддержки, время пребывания пациента в ОРИТ и, возможно, улучшает исход заболевания. В ряде исследований показано, что значения ВСВЛ (в отличие от ЦВД и ДЗЛК) коррелируют с составляющими шкалы повреждения лёгких: комплайнсом, индексом оксигенации и степенью рентгенологических изменений, а также обладают чётким прогностическим значением.
Неинвазивные методы
Неинвазивные методы определения волюметрических гемодинамических показателей включают эхокардиографию и томографическую плетизмографию.
Трансторакальная и чреспищеводная эхокардиография позволяет оценить анатомию сердца в динамике. С помощью метода можно измерить заполнение левого желудочка (конечно-диастолический и конечно-систолический объём), фракцию изгнания, оценить функцию клапанов, глобальную и местную сократимость миокарда, выявить зоны гипо-, дис- и акинезии. Кроме того, эхокардиография даёт возможность обнаружить выпот в полости перикарда и диагностировать тампонаду сердца. Ценность метода зависит от навыков и опыта оператора в получении и интерпретации ультразвуковой картины.
Ряд неинвазивных методов: метод смешанных инертных газов (МЮЕТ), УЗИ, КТ и МРТ - позволяет количественно или полуколичественно оценить степень ОЛ. Последние два метода (без контрастирования) не позволяют дифференцировать ВСВЛ, кровь лёгочных сосудов и элементы лёгочной паренхимы. Ультразвуковая оценка («феномен хвоста кометы») ограничена случаями кардиогенного ОЛ и не может быть использована при остром повреждении лёгких в связи со схожей акустической картиной фиброзных изменений.
ЗАКЛЮЧЕНИЕ
Показатели, получаемые с помощью современного мониторинга гемодинамики, служат ценным ориентиром в ходе анестезии и интенсивной терапии критических состояний. Мониторинг гемодинамики обладает важным прогностическим значением, может улучшить клинический исход и уменьшить частоту осложнений при использовании современных диагностических и лечебных методов. Несмотря на непрерывное развитие и совершенствование, пока не существует универсального метода мониторинга кровообращения, улучшающего исход заболевания и снижающего летальность реанимационных больных. Для того чтобы оценить новые методы мониторинга гемодинамики, требуются широкомасштабные клинические исследования.
СПИСОК ЛИТЕРАТУРЫ
Бунятян А.А., Рябов Г.А., Маневич А.З. Анестезиология и реаниматология. - М.: Медицина, 1984.
Интенсивная терапия / Под общ. ред. П. Марино. - М.: ГЭОТАР-Мед, 1998.
Ап1:опеШ М., Ьеуу М., Апс1ге\У5 Р.]. е! а1. Нетойупагтс топйопп^ т $Ьоск апс! трНса- Иоп8 1ог тапа§етеп1;: 1п1:егпа1:юпа1 Сопзепзш СопГегепсе. Раш, Ргапсе, 2006, Арп1 27 -28 // Шегшуе Саге Мес1. - 2007, РеЬ.
Вегпагс! С.К., Зорко С., Сегга Р. е{ а1. Ри1топагу аПегу саГЬе^епгаИоп апс! сНтса1 оиГсоте$: 1;Ье ЫаИопа1 НеаП, Ьип§, апс! В1оос1 1п${лШ{;е апс! Еоос! апс! Втщ АсЬшшзГгаИоп ШогкзЬор героП: сопзепзиз зШетеп! //]АМА. - 2000. - Уо1. 283 - Р. 2568-2572.
СоерГеП М.5.С., Кеи1ег Б.А., Акуо1 В.е1 а1. Соа1-сНгес{;ес1 Яшс1 тапа§етеп1; гейисез уа$орге$- зог апс! са!;есЬо1атте и$е т сагсИас $иг§егу ра^етз // 1п1;еп51уе Саге Мес!. - 2007. - Уо1. 33. - Р. 96-103.
Клгоу М.У., Кигкоу УУ., Е^егШаез I,.].Ех1;гауа$си1аг 1ип§ \уа!ег т 8ер815 // УеагЬоок о!" Мегшуе Саге апс! Етег^епсу МесНсте, 2005 / Ес!. ].Ь. Утсеп!. - ВегНп; НеЫеШег^; Ы.У.: 5рпп§ег-Уег1а§, 2005. - Р. 449-461.
Ма1Ьгат М., Бе Роиег Т., Эеегеп Э. Соз^-е^есИуепезз оГ гшттаПу туа$1уе Ьето^упапж тот!;опп§ // УеагЬоок оГ Мегшуе Саге апс! Етег^епсу МесНсте, 2005 / Ес!. Утсеп!: - ВегНп; Не1с1е1Ьег§; Ы.У.: 5рпп§ег-Уег1а§, 2005. - Р. 603-631.
Магк].В., 51аи§Ь1;ег Т.Р. СагсНоуа$си1аг шопИопп^ // Апез{;Ье$1а. - 6гЬ ес] / Ес!. К.Э. МШег - Е1$еУ1ег СЬигсЬШ иут§5{;опе, 2005. - Р. 1265-1362.
Ошск СиМе 10 СагсНори1топагу Саге / Ес!. Р.К. 1лсЬ|;еп1:Ьа1 - Ес!\уагс15 Шезаепсез, 2002. - Р. 1-112.
Шуегз Е., Ы^иуеп В., Нау51ас! 5. е! а1. Еаг1у Соа1-01гес1;ес! ТЬегару СоНаЬогаИуе Сгоир: Еаг1у еоа1-сНгес1;ес1 гЬегару т 1;Ье Ггеа1;теп1 о!" зеуеге 5ер$1$ апс! $ер!лс $Ьоск // N. Егш1. Т. Мес!. - 2001. - Уо1. 345 - Р. 1368-1377.
Ко^егз Р. 1пуа51уе Ьето^упагшс тотШпп^ // АррПес! СагсНоуа$си1аг РЬу$ю1о§у / Ес!. М.К. Ртзку - ВегНп; Не1с1е1Ьег§; Ы.У.: 5рпп§ег-Уег1а§, 1997. - Р. 113-128.
ТЬе Е5САРЕ 1пуе$и§а1;ог$ апс! Е5САРЕ 5Шс1у СоогсНпаШгз. Еуа1иа1;юп §Шс!у оГ соп§е$1пуе ЬеаП ГаНиге апс! ри1топагу аПегу сагЬеГепгаиоп е^ес^уепезз: 1:Ье Е5САРЕ 1па1 // ]АМА - 2005. - Уо1. 294. - Р. 1625-1633.
ТЬе 1п1:еп51Уе Саге ШИ Мапиа1 / Ес!. Р.Ы. Ьапкеп. - Ш.В. Заипйегз, 2001.
МЬее1ег А.Р., Вегпагс! С.К., ТЬотрзоп В.Т. е* а1. Ри1шопагу-аг1;егу уегзиз сепГга1 уепош сагЬе!;ег 1о §шс1е 1хеа{;теп1 оГ аси1;е 1ип§ т;щгу // N. Еп§1. ]. Мес!. - 2006. - Уо1. 25, N 354 - Р. 2213-2224.


Кардиогенный шок

Роль инвазивных методов контроля за гемодинамикой у больных острым инфарктом миокарда

Изменения гемодинамики у больных ИМ тщательно исследовались как в нашей стране [Виноградов А. В., 1965; Лукомский П. Е. и др., 1965; Чазов Е. И. и др., 1966], так и за рубежом .

Отличительной чертой исследования гемодинамики у больных ИМ в последнее десятилетие можно считать их четко определившуюся прикладную направленность, вытекающую из необходимости иметь оперативную информацию об ее основных показателях как для уточнения диагностики, так и для коррекции той мощной лекарственной терапии, которая может быть единственно эффективной при лечении больных в остром периоде, и при этом оказать минимальное побочное действие.

Современный этап контроля за кровообращением больных в блоках интенсивного наблюдения характеризуется стремлением к оперативной оценке состояния сердечно-сосудистой системы в динамике с помощью количественного исследования ее функции.

К сожалению, неинвазивные методы оценки гемодинамики и сократительной функции сердца, такие, как эхокардиография и ультразвуковое сканирование сердца, фазовый анализ сердечного цикла, измерение АД аускультативным методом, определение кровотока с помощью допплеровского эффекта и ряд других, наряду с большими преимуществами имеют и существенные недостатки, особенно ощутимые при контроле за больными ИМ. Достаточно, например, указать, что аускультативный метод определения АД неадекватен для многих случаев острой сердечно-сосудистой недостаточности, в частности при шоке; что по данным, полученным в ВКНЦ АМН СССР, около At больных ИМ не могут быть обследованы ультразвуковыми методами по техническим условиям (относительно пожилой контингент — значительная часть лиц с эмфиземой легких) и т. д. С помощью неинвазивных методов пока не удается определить ряд важных гемодинамических показателей, характеризующих функциональное состояние сердца и сосудистого русла, поэтому в последние годы все большее внимание уделяется технически более сложным инвазивным методам.

Для прямого измерения АД вводят (обычно чрескожно пункционно) катетеры в лучевую, плечевую или бедренную артерию. При необходимости конец катетера продвигают в аорту. Метод позволяет постоянно контролировать АД по экрану осциллоскопа, а при необходимости регистрировать его на бумажную или магнитную ленту. Кроме величины систолического и диастолического АД, можно точно вычислить среднее АД и среднее систолическое АД, что необходимо для определения ряда дополнительных показателей, таких, например, как работа сердца или индекс напряжение/время. Существенное преимущество метода — возможность повторных многократных заборов" проб крови для определения р02, рСОг, рН и других параметров.

Важным этапом в применении инвазивных методов контроля за гемодинамикой у тяжелобольных явилась разработка принципа плавающего (типа Свона — Ганца) катетера. Суть его заключается в том, что относительно тонкий и легкий катетер снабжается на конце небольшим баллончиком, который можно раздуть газом. Катетер вводят в периферическую вену (как правило, пункционно) и продвигают его в правое предсердие. Здесь баллончик раздувают газом (воздух, углекислый газ) и катетер в силу приобретенной плавучести током крови заносится в правый желудочек, а затем и в легочную артерию. Если после этого газ эвакуировать из баллончика, продвинуть конец катетера в разветвления легочной артерии, а затем баллончик вновь раздуть, то он обтурирует («заклинивает») сосуд и создает условия для измерения капиллярного легочного давления и передаточного давления из левых отделов сердца.

Использование «плавающих» катетеров значительно упростило методику катетеризации правых отделов сердца, сделало ее менее опасной для тяжелобольного и более доступной для многих лечебных учреждений. Достаточно указать, что введение такого катетера не требует визуального (рентгеновского) контроля и может быть осуществлено непосредственно в палате без перекладывания больного с койки. В опытных руках процедура занимает, как правило, не более 5 мин. Метод предоставляет широкие возможности, так как позволяет не только постоянно контролировать давление в перечисленных сосудистых областях, но и производить заборы проб крови из заведомо известных отделов и вводить необходимые вещества в любой отдел от крупных вен до разветвлений легочной артерии, позволяет при снаряжении катетера термисторами, электродами и прочими датчиками определять минутный объем сердца методом разведения индикатора (термодилюция), регистрировать внутриполостные электрограммы, в том числе электрограмму предсердно-желудочкового пучка, проводить электростимуляцию сердца и пр.

Давление в правом предсердии зависит от функционального состояния правого желудочка и величины венозного притока. Любые причины, приводящие к повышению диастолического давления в правом желудочке, обусловливают повышение давления и в правом предсердии. Так, оно оказывается повышенным и при поражении правого желудочка, и малого круга, и при левожелудочковой недостаточности в определенной стадии. Следует, однако, еще раз подчеркнуть, что между величиной давления в правом и левом предсердиях в патологических условиях нет тесной взаимосвязи и по уровню центрального венозного давления далеко не всегда можно судить о функциональном состоянии левого желудочка.

Систолическое и особенно диастолическое давление в правом желудочке может меняться в результате как поражения самого правого желудочка (например, в случае его инфаркта), так и нарушения условий кровотока в малом круге (например, при тромбоэмболии легочной артерии) и дисфункции левого желудочка (например, при его недостаточности).

Весьма ценные данные о состоянии центральной гемодинамики могут быть получены при анализе давления в легочной артерии. Как показано в ряде исследований, диастолическое давление в легочной артерии в нормальных условиях соответствует величине «заклинивающего» давления капилляров легких. Иными словами, при отсутствии патологического препятствия легочному кровотоку по уровню диастолического давления в легочной артерии можно судить о давлении заполнения левого желудочка. Наоборот, что весьма важно с диагностической точки зрения, при соответствии диастолическйго давления в легочной артерии «заклинивающему» давлению в легочных сосудах (давлению в капиллярах легких) можно говорить об отсутствии патологического препятствия кровотоку в сосудах малого круга. Если же диастолическое давление в легочной артерии существенно выше, чем «заклинивающее», по данным, например, на 0,8 кПа (6 мм рт. ст.), то следует искать какой-то патологический процесс, обусловивший появление этих различий. Таким образом, в большинстве случаев, когда необходима оценка функционального состояния левого желудочка по уровню давления его заполнения, достаточно технически значительно более простого определения диастрлического давления в легочной артерии. Однако при выраженной патологии сосудистого русла малого круга для суждения о давлении заполнения левого желудочка следует определять «заклинивающее» легочное капиллярное давление, а для некоторых других ситуаций (например, при подозрении на тромбоэмболию легочной артерии) —определять и сопоставлять обе эти величины.

Легочное капиллярное «заклинивающее» давление в норме не отличается от среднего давления заполнения левого желудочка более чем на 0,133—0,267 кПа (1—2 мм рт. ст.) и тесно связано со средним диастолическим давлением в левом желудочке, превышая его на 0,267—0,800 кПа (2—6 мм рт. ст.). Таким образом, оно отражает функциональное состояние левого желудочка и позволяет косвенно судить о нем. Увеличение «заклинивающего» капиллярного легочного давления до 2,67 кПа (20 мм рт. ст.) и выше, как правило, свидетельствует о нарушении сократительной способности левого желудочка, а более 3,73—4,00 кПа (28—30 мм рт. ст.) говорит об ее тяжелом поражении (обычно при таком уровне капиллярного легочного давления начинается пропотевание жидкости из просвета сосудов в ткань легких — развивается отек легких). Нормальное «заклинивающее» легочное капиллярное давление 1,07—1,60 кПа (8—12 мм рт. ст!). Если при этом у больного нормален минутный объем сердца, to это свидетельствует о нормальной сократительной способности левого желудочка. Снижение минутного объема на фоне низкого давления заполнения левого желудочка свидетельствует о гиповолемии (нередкий гемодинамический вариант кардиогенного шока). При прочих равных условиях оптимум функции левого желудочка наблюдается при давлении заполнения 1,60—2,40 кПа (12—18 мм рт. ст.), а по другим данным — при 2,67—3,20 кПа (20—24 мм рт. ст.).

Все эти показатели вместе с данными о величине АД, минутного объема сердца, результатами других методов исследования позволяют значительно более тонко определить функциональное состояние сердечно-сосудистой системы, центральной гемодинамики, уточнить на этой основе диагноз и подобрать оптимальную терапию. Особенно ценно в этом отношении исследование кривых функции левого желудочка, график которых строится на основании сопоставления сердечного выброса или работы сердца с величиной конечного диастолического давления в левом желудочке или давления заполнения левого желудочка.

Для построения кривой функции левого желудочка необходимо знать соотношение между этими параметрами при различных (по меньшей мере двух) значениях давления заполнения. С этой целью проводят функциональную пробу, которая заключается в быстром введении в правые отделы сердца кровезаменителей (100—600 мл в зависимости от реакции). В результате инфузии кровезаменителя увеличивается давление заполнения левого желудочка и соответственно меняется сердечный выброс. В норме увеличение давления заполнения обусловливает увеличение выброса, однако при патологических условиях, в частности при значительном снижении сократительной функции левого желудочка, он может и уменьшаться. В среднем при ИМ кривая функции левого желудочка уплощена, смещена вниз и вправо. Однако у отдельных больных возможны существенные индивидуальные особенности. Уже анализ исходных данных — величины давления заполнения и сердечного выброса или работы левого желудочка — позволяет выделить несколько гемодинамических вариантов острого ИМ (например, нормальный сердечный выброс при нормальном давлении заполнения, низкий сердечный выброс при высоком давлении заполнения, низкий сердечный выброс при низком давлении заполнения и т. д.). С клинической точки зрения, чрезвычайно важно, что у больных ИМ, имеющих совершенно одинаковые симптомы, определенные рутинными методами, могут быть существенно различные типы нарушения гемодинамики. В этой ситуации только вышеописанный контроль за гемодинамикой позволяет правильно оценить состояние и выбрать оптимальную лечебную тактику. Классический пример такой ситуации — использование массивных доз кровезаменителей при лечении у больных ИМ шока, обусловленного гиповолемией. Если при той же клинической картине находят низкий минутный объем сердца и высокое давление заполнения левого желудочка, то кровезаменители не следует вводить не только с лечебной, но и с диагностической целью — это опасно. Напротив, в таком случае показаны средства, оказывающие положительное инотропное действие на миокард и, возможно, снижающие периферическое сопротивление (вазодилататоры). При гипердинамическом варианте кровообращения у больных ИМ (высокий сердечный выброс при нормальном давлении заполнения левого желудочка), который неблагоприятен из-за того, что обусловливает высокую потребность миокарда в кислороде и тем самым способствует распространению ишемического поражения, показано применение препаратов, оказывающих отрицательное инотропное действие на миокард (блокаторы р-адренергических рецепторов) и т. п.

Инвазивные исследования небезразличны для больного. При использовании «плавающих» катетеров (особенно если катетер оставляется in situ на срок до суток и более) наблюдаются тромбоз и тромбоэмболия ветвей легочной артерии, сегментарные инфаркты легких (при длительном пребывании зонда в положении «заклинивания»), перекручивание катетера, разрыв баллончика и даже перфорация легочной артерии. Наш опыт показывает, что наиболее частые осложнения этой процедуры — нарушения ритма (как правило, экстрасистолы, появляющиеся в момент пассажа конца катетера через желудочек; в единичных случаях отмечена фибрилляция желудочков), тромбофлебит (особенно при длительном пребывании катетера in situ) и травмы, наблюдающиеся при пункции подключичной вены, включая пневмо- и гемоторакс, если используется этот путь введения.

В связи с этим с практической, врачебной точки зрения показания к мониторному инвазивному контролю за гемодинамикой ограничиваются теми случаями, в которых с помощью этих методов могут быть получены данные, определяющие выбор лечебной тактики. Такой ситуацией* безусловно, является кардиогенный шок. Инвазивное исследование показано при появлении грубого систолического шума у больного острым ИМ. Если при этом регистрируется высокое «заклинивающее» давление с характерными высокими волнами, обусловленными сокращениями левого желудочка, то это свидетельствует о значительной митральной регургитации и говорит в пользу поражения сосочковых мышц. Забор проб крови из различных отделов правого сердца и легочной артерии с последующим анализом их состава (содержание Ог) —важный прием в диагностике перфорации межжелудочковой перегородки. По соотношению между диастолическим давлением в легочной артерии и «заклинивающим» давлением в легочных капиллярах можно определить препятствие кровотоку в малом круге и таким образом подтвердить или отвергнуть диагноз легочной тромбоэмболии. Мониторный контроль за гемодинамикой с использованием инвазивных методов показан, по нашему мнению, и еще при одной форме острой недостаточности кровообращения — отеке легких. Это диктуется тем, что изменения гемодинамики под влиянием современных методов лечения (быстродействующие диуретики, вазодилататоры) происходят значительно быстрее, чем, например, исчезают хрипы в легких, рентгенологические признаки отека легких и даже диуретический эффект после введения мочегонных. Последнее обусловлено их способностью увеличивать емкость венозного русла. И если ориентироваться только на эти более инертные показатели, то можно вызвать весьма значительное падение давления заполнения левого желудочка вследствие гиповолемии с последующим развитием гиповолемического шока (на фоне аускультативной и рентгенологической картины отека легких!). Целесообразен такой контроль и во всех остальных случаях, когда используется терапия активными, быстро действующими сосудорасширяющими средствами (нитропруссид натрия, нитроглицерин), вазопрессорами (норадреналин) или их комбинацией. По-видимому, такой контроль желателен и при некоторых специальных лечебных манипуляциях, например при контрапульсации. В последнее время все шире используют мероприятия, направленные на ограничение размеров очага поражения при ИМ. Те из них, которые решают эту задачу с помощью изменения гемодинамики (нитроглицерин, нитропруссид натиря) или интенсивности функционирования сердца (блокаторы р-адренергических рецепторов), также Предпочтительно проводить с мониторным контролем, который необходим не только для уточнения показания к выбору препарата, но и для корректировки дозы в процессе лечения. Следует, однако, подчеркнуть, что методы ограничения размеров очага поражения при ИМ пока находятся в стадии изучения и в настоящее время еще не представляется возможным сказать, оправдывается ли опасность вполне реальных осложнений, которыми чреваты инвазивные методы, предполагаемой пользой их применения. По мнению Swan (1977), к введению «плавающего» катетера в легочную артерию следует прибегать во всех тех случаях, «...в которых в прошлом считали показанным измерение центрального венозного давления». С этим, безусловно, можно было бы согласиться... если бы речь шла о неинвазивном или «менее инвазивном» исследовании. По-видимому, в настоящее время и такие признаки сердечной недостаточности, как ритм галопа и умеренное количество влажных хрипов в легких, не могут сами по себе служить показанием к использованию инвазивного контроля за гемодинамикой, так как их появление, как показали наблюдения, проведенные в ВКНЦ АМН СССР [Карпов Ю. А. и др., 1978] и других клиниках, далеко не всегда свидетельствует о такой тяжести состояния, которая требует медикаментозной коррекции, и со временем исчезает без специального лечения.

Таким образом, мониторный контроль за состоянием гемодинамики у больных острым ИМ дает важнейшую для диагностики и определения лечебной тактики информацию. Только использование этого комплекса методов позволяет улучшить прогноз у ряда больных с острой недостаточностью кровообращения.


Необходимо, чтобы специализированные, кардиологические отделения, куда поступают больные острым ИМ, были готовы к проведению такого контроля за состоянием гемодинамики. Оно оказывается необходимым у 10—20% госпитализированных с острым ИМ.

← + Ctrl + →
Острая недостаточность кровообращения Кардиогенный шок



2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.