Определения основных показателей гемодинамики и дыхания больного. Мониторинг гемодинамики в анестезиологии и интенсивной терапии Параметры оценки систем дыхания и кровообращения


Кардиогенный шок

Роль инвазивных методов контроля за гемодинамикой у больных острым инфарктом миокарда

Изменения гемодинамики у больных ИМ тщательно исследовались как в нашей стране [Виноградов А. В., 1965; Лукомский П. Е. и др., 1965; Чазов Е. И. и др., 1966], так и за рубежом .

Отличительной чертой исследования гемодинамики у больных ИМ в последнее десятилетие можно считать их четко определившуюся прикладную направленность, вытекающую из необходимости иметь оперативную информацию об ее основных показателях как для уточнения диагностики, так и для коррекции той мощной лекарственной терапии, которая может быть единственно эффективной при лечении больных в остром периоде, и при этом оказать минимальное побочное действие.

Современный этап контроля за кровообращением больных в блоках интенсивного наблюдения характеризуется стремлением к оперативной оценке состояния сердечно-сосудистой системы в динамике с помощью количественного исследования ее функции.

К сожалению, неинвазивные методы оценки гемодинамики и сократительной функции сердца, такие, как эхокардиография и ультразвуковое сканирование сердца, фазовый анализ сердечного цикла, измерение АД аускультативным методом, определение кровотока с помощью допплеровского эффекта и ряд других, наряду с большими преимуществами имеют и существенные недостатки, особенно ощутимые при контроле за больными ИМ. Достаточно, например, указать, что аускультативный метод определения АД неадекватен для многих случаев острой сердечно-сосудистой недостаточности, в частности при шоке; что по данным, полученным в ВКНЦ АМН СССР, около At больных ИМ не могут быть обследованы ультразвуковыми методами по техническим условиям (относительно пожилой контингент — значительная часть лиц с эмфиземой легких) и т. д. С помощью неинвазивных методов пока не удается определить ряд важных гемодинамических показателей, характеризующих функциональное состояние сердца и сосудистого русла, поэтому в последние годы все большее внимание уделяется технически более сложным инвазивным методам.

Для прямого измерения АД вводят (обычно чрескожно пункционно) катетеры в лучевую, плечевую или бедренную артерию. При необходимости конец катетера продвигают в аорту. Метод позволяет постоянно контролировать АД по экрану осциллоскопа, а при необходимости регистрировать его на бумажную или магнитную ленту. Кроме величины систолического и диастолического АД, можно точно вычислить среднее АД и среднее систолическое АД, что необходимо для определения ряда дополнительных показателей, таких, например, как работа сердца или индекс напряжение/время. Существенное преимущество метода — возможность повторных многократных заборов" проб крови для определения р02, рСОг, рН и других параметров.

Важным этапом в применении инвазивных методов контроля за гемодинамикой у тяжелобольных явилась разработка принципа плавающего (типа Свона — Ганца) катетера. Суть его заключается в том, что относительно тонкий и легкий катетер снабжается на конце небольшим баллончиком, который можно раздуть газом. Катетер вводят в периферическую вену (как правило, пункционно) и продвигают его в правое предсердие. Здесь баллончик раздувают газом (воздух, углекислый газ) и катетер в силу приобретенной плавучести током крови заносится в правый желудочек, а затем и в легочную артерию. Если после этого газ эвакуировать из баллончика, продвинуть конец катетера в разветвления легочной артерии, а затем баллончик вновь раздуть, то он обтурирует («заклинивает») сосуд и создает условия для измерения капиллярного легочного давления и передаточного давления из левых отделов сердца.

Использование «плавающих» катетеров значительно упростило методику катетеризации правых отделов сердца, сделало ее менее опасной для тяжелобольного и более доступной для многих лечебных учреждений. Достаточно указать, что введение такого катетера не требует визуального (рентгеновского) контроля и может быть осуществлено непосредственно в палате без перекладывания больного с койки. В опытных руках процедура занимает, как правило, не более 5 мин. Метод предоставляет широкие возможности, так как позволяет не только постоянно контролировать давление в перечисленных сосудистых областях, но и производить заборы проб крови из заведомо известных отделов и вводить необходимые вещества в любой отдел от крупных вен до разветвлений легочной артерии, позволяет при снаряжении катетера термисторами, электродами и прочими датчиками определять минутный объем сердца методом разведения индикатора (термодилюция), регистрировать внутриполостные электрограммы, в том числе электрограмму предсердно-желудочкового пучка, проводить электростимуляцию сердца и пр.

Давление в правом предсердии зависит от функционального состояния правого желудочка и величины венозного притока. Любые причины, приводящие к повышению диастолического давления в правом желудочке, обусловливают повышение давления и в правом предсердии. Так, оно оказывается повышенным и при поражении правого желудочка, и малого круга, и при левожелудочковой недостаточности в определенной стадии. Следует, однако, еще раз подчеркнуть, что между величиной давления в правом и левом предсердиях в патологических условиях нет тесной взаимосвязи и по уровню центрального венозного давления далеко не всегда можно судить о функциональном состоянии левого желудочка.

Систолическое и особенно диастолическое давление в правом желудочке может меняться в результате как поражения самого правого желудочка (например, в случае его инфаркта), так и нарушения условий кровотока в малом круге (например, при тромбоэмболии легочной артерии) и дисфункции левого желудочка (например, при его недостаточности).

Весьма ценные данные о состоянии центральной гемодинамики могут быть получены при анализе давления в легочной артерии. Как показано в ряде исследований, диастолическое давление в легочной артерии в нормальных условиях соответствует величине «заклинивающего» давления капилляров легких. Иными словами, при отсутствии патологического препятствия легочному кровотоку по уровню диастолического давления в легочной артерии можно судить о давлении заполнения левого желудочка. Наоборот, что весьма важно с диагностической точки зрения, при соответствии диастолическйго давления в легочной артерии «заклинивающему» давлению в легочных сосудах (давлению в капиллярах легких) можно говорить об отсутствии патологического препятствия кровотоку в сосудах малого круга. Если же диастолическое давление в легочной артерии существенно выше, чем «заклинивающее», по данным, например, на 0,8 кПа (6 мм рт. ст.), то следует искать какой-то патологический процесс, обусловивший появление этих различий. Таким образом, в большинстве случаев, когда необходима оценка функционального состояния левого желудочка по уровню давления его заполнения, достаточно технически значительно более простого определения диастрлического давления в легочной артерии. Однако при выраженной патологии сосудистого русла малого круга для суждения о давлении заполнения левого желудочка следует определять «заклинивающее» легочное капиллярное давление, а для некоторых других ситуаций (например, при подозрении на тромбоэмболию легочной артерии) —определять и сопоставлять обе эти величины.

Легочное капиллярное «заклинивающее» давление в норме не отличается от среднего давления заполнения левого желудочка более чем на 0,133—0,267 кПа (1—2 мм рт. ст.) и тесно связано со средним диастолическим давлением в левом желудочке, превышая его на 0,267—0,800 кПа (2—6 мм рт. ст.). Таким образом, оно отражает функциональное состояние левого желудочка и позволяет косвенно судить о нем. Увеличение «заклинивающего» капиллярного легочного давления до 2,67 кПа (20 мм рт. ст.) и выше, как правило, свидетельствует о нарушении сократительной способности левого желудочка, а более 3,73—4,00 кПа (28—30 мм рт. ст.) говорит об ее тяжелом поражении (обычно при таком уровне капиллярного легочного давления начинается пропотевание жидкости из просвета сосудов в ткань легких — развивается отек легких). Нормальное «заклинивающее» легочное капиллярное давление 1,07—1,60 кПа (8—12 мм рт. ст!). Если при этом у больного нормален минутный объем сердца, to это свидетельствует о нормальной сократительной способности левого желудочка. Снижение минутного объема на фоне низкого давления заполнения левого желудочка свидетельствует о гиповолемии (нередкий гемодинамический вариант кардиогенного шока). При прочих равных условиях оптимум функции левого желудочка наблюдается при давлении заполнения 1,60—2,40 кПа (12—18 мм рт. ст.), а по другим данным — при 2,67—3,20 кПа (20—24 мм рт. ст.).

Все эти показатели вместе с данными о величине АД, минутного объема сердца, результатами других методов исследования позволяют значительно более тонко определить функциональное состояние сердечно-сосудистой системы, центральной гемодинамики, уточнить на этой основе диагноз и подобрать оптимальную терапию. Особенно ценно в этом отношении исследование кривых функции левого желудочка, график которых строится на основании сопоставления сердечного выброса или работы сердца с величиной конечного диастолического давления в левом желудочке или давления заполнения левого желудочка.

Для построения кривой функции левого желудочка необходимо знать соотношение между этими параметрами при различных (по меньшей мере двух) значениях давления заполнения. С этой целью проводят функциональную пробу, которая заключается в быстром введении в правые отделы сердца кровезаменителей (100—600 мл в зависимости от реакции). В результате инфузии кровезаменителя увеличивается давление заполнения левого желудочка и соответственно меняется сердечный выброс. В норме увеличение давления заполнения обусловливает увеличение выброса, однако при патологических условиях, в частности при значительном снижении сократительной функции левого желудочка, он может и уменьшаться. В среднем при ИМ кривая функции левого желудочка уплощена, смещена вниз и вправо. Однако у отдельных больных возможны существенные индивидуальные особенности. Уже анализ исходных данных — величины давления заполнения и сердечного выброса или работы левого желудочка — позволяет выделить несколько гемодинамических вариантов острого ИМ (например, нормальный сердечный выброс при нормальном давлении заполнения, низкий сердечный выброс при высоком давлении заполнения, низкий сердечный выброс при низком давлении заполнения и т. д.). С клинической точки зрения, чрезвычайно важно, что у больных ИМ, имеющих совершенно одинаковые симптомы, определенные рутинными методами, могут быть существенно различные типы нарушения гемодинамики. В этой ситуации только вышеописанный контроль за гемодинамикой позволяет правильно оценить состояние и выбрать оптимальную лечебную тактику. Классический пример такой ситуации — использование массивных доз кровезаменителей при лечении у больных ИМ шока, обусловленного гиповолемией. Если при той же клинической картине находят низкий минутный объем сердца и высокое давление заполнения левого желудочка, то кровезаменители не следует вводить не только с лечебной, но и с диагностической целью — это опасно. Напротив, в таком случае показаны средства, оказывающие положительное инотропное действие на миокард и, возможно, снижающие периферическое сопротивление (вазодилататоры). При гипердинамическом варианте кровообращения у больных ИМ (высокий сердечный выброс при нормальном давлении заполнения левого желудочка), который неблагоприятен из-за того, что обусловливает высокую потребность миокарда в кислороде и тем самым способствует распространению ишемического поражения, показано применение препаратов, оказывающих отрицательное инотропное действие на миокард (блокаторы р-адренергических рецепторов) и т. п.

Инвазивные исследования небезразличны для больного. При использовании «плавающих» катетеров (особенно если катетер оставляется in situ на срок до суток и более) наблюдаются тромбоз и тромбоэмболия ветвей легочной артерии, сегментарные инфаркты легких (при длительном пребывании зонда в положении «заклинивания»), перекручивание катетера, разрыв баллончика и даже перфорация легочной артерии. Наш опыт показывает, что наиболее частые осложнения этой процедуры — нарушения ритма (как правило, экстрасистолы, появляющиеся в момент пассажа конца катетера через желудочек; в единичных случаях отмечена фибрилляция желудочков), тромбофлебит (особенно при длительном пребывании катетера in situ) и травмы, наблюдающиеся при пункции подключичной вены, включая пневмо- и гемоторакс, если используется этот путь введения.

В связи с этим с практической, врачебной точки зрения показания к мониторному инвазивному контролю за гемодинамикой ограничиваются теми случаями, в которых с помощью этих методов могут быть получены данные, определяющие выбор лечебной тактики. Такой ситуацией* безусловно, является кардиогенный шок. Инвазивное исследование показано при появлении грубого систолического шума у больного острым ИМ. Если при этом регистрируется высокое «заклинивающее» давление с характерными высокими волнами, обусловленными сокращениями левого желудочка, то это свидетельствует о значительной митральной регургитации и говорит в пользу поражения сосочковых мышц. Забор проб крови из различных отделов правого сердца и легочной артерии с последующим анализом их состава (содержание Ог) —важный прием в диагностике перфорации межжелудочковой перегородки. По соотношению между диастолическим давлением в легочной артерии и «заклинивающим» давлением в легочных капиллярах можно определить препятствие кровотоку в малом круге и таким образом подтвердить или отвергнуть диагноз легочной тромбоэмболии. Мониторный контроль за гемодинамикой с использованием инвазивных методов показан, по нашему мнению, и еще при одной форме острой недостаточности кровообращения — отеке легких. Это диктуется тем, что изменения гемодинамики под влиянием современных методов лечения (быстродействующие диуретики, вазодилататоры) происходят значительно быстрее, чем, например, исчезают хрипы в легких, рентгенологические признаки отека легких и даже диуретический эффект после введения мочегонных. Последнее обусловлено их способностью увеличивать емкость венозного русла. И если ориентироваться только на эти более инертные показатели, то можно вызвать весьма значительное падение давления заполнения левого желудочка вследствие гиповолемии с последующим развитием гиповолемического шока (на фоне аускультативной и рентгенологической картины отека легких!). Целесообразен такой контроль и во всех остальных случаях, когда используется терапия активными, быстро действующими сосудорасширяющими средствами (нитропруссид натрия, нитроглицерин), вазопрессорами (норадреналин) или их комбинацией. По-видимому, такой контроль желателен и при некоторых специальных лечебных манипуляциях, например при контрапульсации. В последнее время все шире используют мероприятия, направленные на ограничение размеров очага поражения при ИМ. Те из них, которые решают эту задачу с помощью изменения гемодинамики (нитроглицерин, нитропруссид натиря) или интенсивности функционирования сердца (блокаторы р-адренергических рецепторов), также Предпочтительно проводить с мониторным контролем, который необходим не только для уточнения показания к выбору препарата, но и для корректировки дозы в процессе лечения. Следует, однако, подчеркнуть, что методы ограничения размеров очага поражения при ИМ пока находятся в стадии изучения и в настоящее время еще не представляется возможным сказать, оправдывается ли опасность вполне реальных осложнений, которыми чреваты инвазивные методы, предполагаемой пользой их применения. По мнению Swan (1977), к введению «плавающего» катетера в легочную артерию следует прибегать во всех тех случаях, «...в которых в прошлом считали показанным измерение центрального венозного давления». С этим, безусловно, можно было бы согласиться... если бы речь шла о неинвазивном или «менее инвазивном» исследовании. По-видимому, в настоящее время и такие признаки сердечной недостаточности, как ритм галопа и умеренное количество влажных хрипов в легких, не могут сами по себе служить показанием к использованию инвазивного контроля за гемодинамикой, так как их появление, как показали наблюдения, проведенные в ВКНЦ АМН СССР [Карпов Ю. А. и др., 1978] и других клиниках, далеко не всегда свидетельствует о такой тяжести состояния, которая требует медикаментозной коррекции, и со временем исчезает без специального лечения.

Таким образом, мониторный контроль за состоянием гемодинамики у больных острым ИМ дает важнейшую для диагностики и определения лечебной тактики информацию. Только использование этого комплекса методов позволяет улучшить прогноз у ряда больных с острой недостаточностью кровообращения.


Необходимо, чтобы специализированные, кардиологические отделения, куда поступают больные острым ИМ, были готовы к проведению такого контроля за состоянием гемодинамики. Оно оказывается необходимым у 10—20% госпитализированных с острым ИМ.

← + Ctrl + →
Острая недостаточность кровообращения Кардиогенный шок

Вопросы контроля за гемодинамическими параметрами при проведении инфузионной терапии являются весьма проблематичными. Измерение отдельных параметров, например ЦВД или ДЗЛА, не коррелирует с прямым определением ОЦК. Нередко на фоне гиповолемии наблюдается венозная и артериолярная вазоконстрикция, при этом могут наблюдаться высокие цифры ЦВД. Кроме того, на этот параметр влияет целый ряд других факторов: давление в грудной клетке, состояние сосудов малого круга кровообращения, функция трехстворчатого клапана, насосная функция левых и правых отделов сердца. Высокое ЦВД на фоне гиповолемии может наблюдаться при использовании неоправданно больших дыхательных объемов и PEEP во время ИВЛ, у пациентов с легочной гипертензией, а также при сердечной недостаточности. Кроме того, недостоверные результаты могут быть получены при неправильной позиции центрального венозного катетера, к примеру, при попадании его дистального конца в правый желудочек сердца.

Показатель ДЗЛА также не всегда отражает состояние ОЦК и преднагрузки левого желудочка. На этот показатель нельзя ориентироваться у больных со II-III степенью легочной гипертензии. Во избежание диагностических ошибок при значительных гемодинамических нарушениях во время восполнения ОЦК помимо вышеперечисленных параметров необходим комплексный мониторинг с измерением сердечного выброса, Т02, П02, концентрации лактата и показателей оксигенации смешанной венозной крови.

Если во время проведения пробы наблюдается снижение СВ , инфузию жидкости прекращают. При нормальном ответе на пробу значения СИ достигают 2,5-3,5 л/мин/м2 после возрастания ДЗЛК до 10-12 мм рт. ст. (кривая 1). У некоторых больных нормальная производительность сердца наблюдается при высоких давлениях наполнения, достигающих 18-20 мм рт. ст. (кривая 2). Встречаются случаи, когда нормальная производительность сердца наблюдается при относительно невысоких значениях показателей преднагрузки (кривая 3). У ряда пациентов при низких давлениях наполнения желудочков сердца инфузия небольших объемов приводит к резкому падению СИ, что свидетельствует о низких функциональных резервах миокарда и необходимости инотропной поддержки (кривая 4). В этих случаях возможно введение жидкости в медленном темпе под прикрытием симпатомиметиков.

Циркуляторный шок

Циркуляторный шок представляет собой клинический синдром общей недостаточности кровообращения с неадекватной тканевой оксигенацией (Т02), приводящей к снижению потребления кислорода (П02), анаэробному метаболизму и лактат-ацидозу. Weil M.H. и Henning подразделяют шок на 4 категории: гиповолемический, кардиогенный, дистрибутивный, обусловленный относительной гиповолемией, и обструктивный, обусловленный обструкцией магистральных сосудов.

Гиповолемический шок обусловлен снижением ОЦК. Его основными причинами являются кровотечение (травматический или геморрагический шок) и дегидратация (ожоговый шок или шок, обусловленный потерей жидкости и электролитов при диарее, рвоте или через фистулу).

Дистрибутивный шок (увеличение емкости сосудистой системы):
анафилактический шок;
септический шок;
неврогенный шок (нарушение центральной регуляции сосудистого тонуса после церебральной или спинальной травмы).

Обструктивный шок (обструкция магистральных сосудов).
тромбоэмболия легочной артерии;
синдром верхней полой вены.

Основными факторами, характеризующими состояние кровообращения и его эффективность, являются МОС, общее периферическое сопротивление сосудов и ОЦК (табл. 10.1). Эти факторы взаимообусловлены и взаимосвязаны и являются определяющими. Измерение лишь АД и частоты пульса не может дать полного представления о состоянии кровообращения. Определение МОС, ОЦК и вычисление некоторых косвенных показателей позволяют получить необходимую информацию.

Минутный объем сердца, или сердечный выброс, - количество крови, проходящее через сердце в 1 мин; сердечный индекс - отношение СВ к площади поверхности тела: СВ составляет в среднем 5-7 л/мин.

Ударный объем - количество крови, выбрасываемой сердцем за одну систолу; работа левого желудочка - механическая работа, производимая сердцем в 1 мин; давление заклинивания легочной артерии или заклинивания легочных капилляров - давление в дистальной ветви легочной артерии при раздутом баллончике; центральное венозное давление - давление в устье полой вены или в правом предсердии; общее периферическое сопротивление сосудов - показатель общего сопротивления сосудистой системы выбрасываемому сердцем объему крови:

Таблица 10.1.

Посредством коэффициента 80 переводятся величины давления и объема в дин-с/см5 Фактически эта величина является индексом ОПСС.

Основной функцией кровообращения является доставка тканям необходимого количества кислорода и питательных веществ. Кровь переносит энергетические вещества, витамины, ионы, гормоны и биологически активные вещества с места их образования в различные органы. Баланс жидкости в организме, сохранение постоянной температуры тела, освобождение клеток от шлаков и доставка их к органам экскреции происходят благодаря постоянной циркуляции крови по сосудам.

Сердце состоит из двух «насосов»: левого и правого желудочков, которые должны проталкивать одинаковое количество крови, чтобы предупредить застой в артериальной и венозной системах (рис. 10.1). Левый желудочек, обладающий мощной мускулатурой, может создавать высокое давление. При достаточной оксигенации он легко приспосабливается к внезапным требованиям увеличения СВ. Правый желудочек, обеспечивая достаточный МОС, не может адекватно функционировать при внезапном повышении сопротивления.

Каждый сердечный цикл длится 0,8 с. Систола желудочков происходит в течение 0,3 с, диастола - 0,5 с. Сердечный ритм в здоровом сердце регулируется в синусовом узле, который находится у места впадения полых вен в правое предсердие. Импульс возбуждения распространяется по предсердиям, а затем к атриовентрикулярному узлу, расположенному между предсердиями и желудочками. Из атриовентрикулярного узла электрический импульс поступает по правой и левой ветвям пучка Гиса и волокнам Пуркинье (миоциты сердечные проводящие), покрывающим эндокардиальную поверхность обоих желудочков.

Рис. 10.1. Сердце.

1 - аорта, 2 - легочная артерия; 3 - дуга аорты; 4 - верхняя полая вена; 5 - нижняя полая пена; б - легочные вены. ПП - правое предсердие; ПЖ - правый желудочек, ЛП - левое предсердие; ЛЖ - левый желудочек.

Минутный объем сердца (сердечный выброс). В здоровом организме основным регуляторным фактором МОС являются периферические сосуды. Спазм и расширение артериол влияют на динамику артериального кровообращения, регионарного и органного кровоснабжения. Венозный тонус, изменяя емкость венозной системы, обеспечивает возврат крови к сердцу.

При заболеваниях или функциональной перегрузке сердца МОС почти полностью зависит от эффективности его «насоса», т.е. функциональной способности миокарда. Способность увеличения СВ в ответ на повышение потребности тканей в кровоснабжении называется сердечным резервом. У взрослых здоровых людей он равен 300-400 % и значительно снижен при заболеваниях сердца.

В регуляции сердечного резерва основную роль играют закон Старлинга, нервная регуляция силы и частоты сердечных сокращений. Указанный закон отражает способность сердца к увеличению силы сокращения при большем наполнении его камер. Согласно этому закону, сердце «перекачивает» количество крови, равное венозному притоку, без значительного изменения ЦВД. Однако в целостном организме нервно-рефлекторные механизмы делают регуляцию кровообращения более тонкой и надежной, обеспечивая непрерывное приспособление кровоснабжения к изменяющейся внутренней и внешней среде.

Сокращения миокарда осуществляются при достаточном снабжении его кислородом. Коронарный кровоток обеспечивает кровоснабжение миокарда в соответствии с потребностями сердечной деятельности. В норме он составляет 5 % СВ, в среднем 250-300 мл/мин. Наполнение коронарных артерий пропорционально среднему давлению в аорте. Коронарный кровоток повышается при снижении насыщения крови кислородом, увеличении концентрации углекислоты и адреналина в крови. В условиях стресса СВ и коронарный кровоток увеличиваются пропорционально. При значительной физической нагрузке СВ может достигать 37-40 л/мин, коронарный кровоток - 2 л/мин. При нарушении коронарного кровообращения сердечный резерв значительно снижается.

Венозный приток к сердцу. В клинических условиях определить величину венозного притока крови к сердцу трудно. Он зависит от величины капиллярного кровотока и градиента давления в капиллярах и правом предсердии. Давление в капиллярах и капиллярный кровоток определяются величиной СВ и пропульсивным действием артерий. Градиенты давления в каждом участке сосудистой системы и правом предсердии различные. Они равны примерно 100 мм рт.ст. в артериальном русле, 25 мм рт.ст. в капиллярах и 15 мм рт. ст. в начале венул. Нулевой точкой для измерения давления в венах считают уровень давления в правом предсердии. Эта точка была названа «физиологическим нулем гидростатического давления».

Венозная система играет большую роль в регуляции притока крови к сердцу. Венозные сосуды обладают способностью к расширению при увеличении объема крови и к сужению при его уменьшении. Состояние венозного тонуса регулируется вегетативной нервной системой. При умеренно сниженном объеме крови приток ее к сердцу обеспечивается повышением венозного тонуса. При выраженной гиповолемии венозный приток становится недостаточным, что ведет к снижению МОС. Переливание крови и растворов увеличивает венозный возврат и повышает МОС. При сердечной недостаточности и повышении давления в правом предсердии создаются условия для снижения венозного возврата и МОС. Компенсаторные механизмы направлены на преодоление снижения венозного притока к сердцу. При слабости правого желудочка и застое крови в полых венах ЦВД значительно повышается.

Насосная функция сердца. Адекватность кровообращения зависит в первую очередь от функции желудочков, определяющих работу сердца как насоса. Измерение ДЗЛК стало громадным шагом вперед в оценке функции сердечно-сосудистой системы. Ранее установленные критерии венозного притока по уровню ЦВД были пересмотрены, так как в некоторых случаях ориентирование на уровень ЦВД при проведении инфузионной терапии приводило к катастрофическим результатам. Этот показатель мог быть нормальным и даже сниженным, в то время как ДЗЛК повышалось более чем в 2 раза, что являлось причиной отека легких. Рассматривая варианты преднагрузки, нельзя не учитывать величину ДЗЛК, которая в норме равна 5-12 мм рт.ст. Освоение метода катетеризации Свана-Ганца открыло новые возможности в гемодинамическом мониторинге. Стало возможным определение внутрипредсердного давления, СВ, насыщения и напряжения кислорода в смешанной венозной крови.

Нормальные величины давления в полостях сердца и легочной артерии представлены в табл. 10.2. Несмотря на значимость измерений ДЗЛК и СВ, нельзя считать эти показатели абсолютными критериями адекватности тканевой перфузии. Однако применение этого метода позволяет контролировать величину преднагрузки и создавать наиболее экономичные режимы работы сердца.

Таблица 10.2. Давление в полостях сердца и легочной артерии

Присасывающая сила сердца. Во время систолы желудочков атриовентрикулярная перегородка смещается по направлению к желудочкам и увеличивается объем предсердий. Образующийся вакуум в предсердиях способствует присасыванию крови из центральных вен в сердце. При расслаблении желудочков напряжение их стенки обеспечивает всасывание крови из предсердий в желудочки.

Значение отрицательного давления в грудной полости. Дыхательные экскурсии относятся к экстракардиальным факторам регуляции МОС. Во время вдоха внутриплевральное давление становится отрицательным. Последнее передается на предсердия и полые вены и приток крови в эти вены и правое предсердие увеличивается. При выдохе происходит повышение давления в брюшной полости, вследствие чего кровь как бы выдавливается из брюшных вен в грудные. Отрицательное давление в плевральной полости способствует увеличению постнагрузки, а положительное (во время ИВЛ) оказывает противоположное действие. Это может служить объяснением снижения систолического давления во время фазы вдоха.

Общее периферическое сопротивление. Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол. Однако изменения тонуса в различных отделах сердечно-сосудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других - вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта - бесконечно большое ОПСС и отсутствие его току крови. При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС. При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5-6 раз и более. Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим. В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.

Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две группы: сосуды сопротивления и емкостные сосуды. Первые регулируют величину ОПСС, АД и степень кровоснабжения отдельных органов и систем организма; вторые, вследствие большой емкости, участвуют в поддержании венозного возврата к сердцу, а следовательно, и МОС.

Сосуды «компрессионной камеры» - аорта и ее крупные ветви - поддерживают градиент давления вследствие растяжимости во время систолы. Это смягчает пульсирующий выброс и делает поступление крови на периферию более равномерным. Прекапиллярные сосуды сопротивления - мелкие артериолы и артерии - поддерживают гидростатическое давление в капиллярах и тканевый кровоток. На их долю выпадает большая часть сопротивления кровотоку. Прекапиллярные сфинктеры, изменяя число функционирующих капилляров, меняют площадь обменной поверхности. В них находятся а-рецепторы, которые при воздействии катехоламинов вызывают спазм сфинктеров, нарушение кровотока и гипоксию клеток. а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение а-рецепторов и снимающими спазм в сфинктерах.

Капилляры являются наиболее важными сосудами обмена. Они осуществляют процесс диффузии и фильтрации - абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Они относятся к системе емкостных сосудов и в патологических состояниях могут вмещать до 90 % объема крови. В нормальных условиях они содержат до 5-7 % крови.

Посткапиллярные сосуды сопротивления - мелкие вены и венулы - регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции, но нейрогенные раздражители также оказывают действие на пре- и посткапиллярные сфинктеры.

Венозные сосуды, вмещающие до 85 % объема крови, не играют значительной роли в сопротивлении, а выполняют функцию емкости и наиболее подвержены симпатическим влияниям. Общее охлаждение, гиперадреналинемия и гипервентиляция приводят к венозному спазму, что имеет большое значение в распределении объема крови. Изменение емкости венозного русла регулирует венозный возврат крови к сердцу.

Шунтовые сосуды - артериовенозные анастомозы - во внутренних органах функционируют только в патологических состояниях, в коже выполняют терморегулирующую функцию.

Объем циркулирующей крови. Определить понятие «объем циркулирующей крови» довольно трудно, так как он является динамической величиной и постоянно изменяется в широких пределах. В состоянии покоя не вся кровь принимает участие в циркуляции, а только определенный объем, совершающий полный кругооборот в относительно короткий промежуток времени, необходимый для поддержания кровообращения. На этом основании в клиническую практику вошло понятие «объем циркулирующей крови».

У молодых мужчин ОЦК равен 70 мл/кг. Он с возрастом уменьшается до 65 мл/кг массы тела. У молодых женщин ОЦК равен 65 мл/кг и тоже имеет тенденцию к уменьшению. У двухлетнего ребенка объем крови равен 75 мл/кг массы тела. У взрослого мужчины объем плазмы составляет в среднем 4-5 % массы тела. Таким образом, у мужчины с массой тела 80 кг объем крови в среднем 5600 мл, а объем плазмы - 3500 мл. Более точные величины объемов крови получаются с учетом площади поверхности тела, так как отношение объема крови к поверхности тела с возрастом не меняется. У тучных пациентов ОЦК в пересчете на 1 кг массы тела меньше, чем у пациентов с нормальной массой. Например, у полных женщин ОЦК равен 55-59 мл/кг массы тела. В норме 65-75 % крови содержится в венах, 20 % - в артериях и 5-7 % - в капиллярах (табл. 10.3).

Потеря 200-300 мл артериальной крови у взрослых, равная примерно 1/3 ее объема, может вызвать выраженные гемодинамические сдвиги, такая же потеря венозной крови составляет всего l/10-1/13 часть ее и не приводит к каким-либо нарушениям кровообращения.

Таблица 10.3.

Распределение объемов крови в организме

Уменьшение объема крови при кровопотере обусловлено потерей эритроцитов и плазмы, при дегидратации - потерей воды, при анемии - потерей эритроцитов и при микседеме - снижением числа эритроцитов и объема плазмы. Гиперволемия характерна для беременности, сердечной недостаточности и полиглобулии.

Метаболизм и кровообращение. Существует тесная корреляционная зависимость между состоянием кровообращения и метаболизмом. Величина кровотока в любой части тела возрастает пропорционально уровню метаболизма. В различных органах и тканях кровоток регулируется разными веществами: для мышц, сердца, печени регуляторами являются кислород и энергетические субстраты, для клеток головного мозга - концентрация углекислого газа и кислород, для почек - уровень ионов и азотистых шлаков. Температура тела регулирует кровоток в коже. Несомненным, однако, является факт высокой степени корреляции между уровнем кровотока в любой части тела и концентрацией кислорода в крови. Повышение потребности тканей в кислороде приводит к возрастанию кровотока. Исключением является ткань мозга. Как недостаток кислорода, так и избыток углекислого газа в равной степени являются мощными стимуляторами мозгового кровообращения. Клетки различно реагируют на недостаток тех или иных веществ, участвующих в метаболизме. Это связано с разной потребностью в них, разными утилизацией и резервом их в крови.

Величина резерва того или иного вещества называется «коэффициентом безопасности», или «коэффициентом утилизации». Данный резерв вещества утилизируется тканями в чрезвычайных условиях и полностью зависит от состояния МОС. При постоянном уровне кровотока транспорт кислорода и его утилизация могут возрасти в 3 раза за счет более полной отдачи кислорода гемоглобином. Иными словами, резерв кислорода может увеличиться только в 3 раза без повышения МОС. Поэтому «коэффициент безопасности» для кислорода равен 3. Для глюкозы он также равен 3, а для других веществ он значительно выше - для углекислого газа - 25, аминокислот - 36, жирных кислот - 28, продуктов белкового обмена - 480. Разница между «коэффициентом безопасности» кислорода с глюкозой и таковым других веществ огромна.

Преднагрузка и постнагрузка. Преднагрузка на миокард определяется как сила, растягивающая сердечную мышцу перед ее сокращением. Для интактного желудочка преднагрузкой является конечный диастолический объем левого желудочка. Поскольку этот объем определить у постели больного сложно, пользуются таким показателем, как конечное диастолическое давление левого желудочка (КДДЛЖ). Если растяжимость левого желудочка нормальна, то ДЗЛК будет равно КДДЛЖ. У больных, находящихся в отделениях интенсивной терапии, растяжимость левого желудочка, как правило, изменена. Растяжимость левого желудочка может быть значительно снижена при ИБС, действии блокаторов кальциевых каналов, влиянии положительного давления во время ИВЛ. Таким образом, ДЗЛК определяет давление в левом предсердии, но не всегда является показателем преднагрузки на левый желудочек.

Постнагрузку определяют как силу, препятствующую или оказывающую сопротивление сокращению желудочков. Она эквивалентна напряжению, возникающему в стенке желудочка во время систолы. Это трансмуральное напряжение стенки желудочка в свою очередь зависит от систолического давления, радиуса камеры (желудочка), импеданса аорты и его составляющих - растяжимости и сопротивления артерий. Постнагрузка включает в себя преднагрузку и давление в плевральной полости (щели). Нагрузочные характеристики сердца выражаются в единицах давления и объема крови [Марино П., 1998].

Транспорт кислорода. Кислород, связанный с гемоглобином (Нb), в артериальной крови определяется с учетом его реального уровня, насыщения артериальной крови кислородом (SаO2) и константы Гюфнера 1,34, указывающей на то, что 1 г гемоглобина при полном насыщении (SaO2 = 100 %) связывает 1,34 мл кислорода:

Кислород, содержащийся в плазме крови в свободном (растворенном) состоянии:

0,003 x РаО2.

СаО2 = 1,34 x Нb (г/л) x SaO2 + 0,003 x РаО2.

Нетрудно заметить, что вклад величины РаО2 в содержание кислорода в артериальной крови несуществен. Гораздо более информативным в оценке транспорта кислорода является показатель SaO2.

Доставка кислорода к тканям (DO2) определяется двумя показателями - величиной СВ (л/мин) и содержанием кислорода в артериальной крови СаО2:

DО2 = СВ x СаО2.

Если пользоваться величиной СИ, а не МОС, то расчет транспорта кислорода должен производиться по следующей формуле:

DО2 = СИ х (1,34 x Нb x SаО2) x 10,

Где коэффициент 10 - фактор преобразования объемных процессов (мл/с).

В норме DО2 составляет 520-720 мл/(мин-м2). Данная величина фактически является индексом DО2, поскольку рассчитана на 1 м2 поверхности тела.

Потребление кислорода тканями. Потребление кислорода тканями (VО2) является заключительным этапом его транспорта. Определение VO2 производится путем умножения величин СВ на артериовенозную разницу по кислороду. При этом следует пользоваться абсолютными величинами не МОС, а СИ, как более точного показателя. Показатель артериовенозной разницы определяется путем вычитания содержания кислорода в смешанной венозной крови (т.е. в легочной артерии) из содержания кислорода в артериальной крови:

VO2 = СИ x (СаО2 – CVO2).

При нормальных значениях СИ величина VO2 колеблется от 110 до 160 мл/(мин-м2).

Утилизация кислорода. Коэффициент утилизации кислорода (КУО2) является показателем поглощаемого кислорода из капиллярного русла. КУО2 определяют как отношение потребления кислорода к показателю его доставки:

КУО2 может колебаться в широких пределах, в покое он равен 22-32%.

Для суммарной оценки транспорта кислорода следует пользоваться не только этими, но и другими показателями.

Большое диагностическое значение придают величинам PvO2 и SvO2. В норме РVO2 в смешанной венозной крови составляет 33-53 мм рт.ст. Уровень PvO2 ниже 30 мм рт.ст. свидетельствует о критическом состоянии транспорта кислорода [Рябов Г.А., 1994]. Насыщение кислородом гемоглобина смешанной венозной крови у здорового человека составляет 68- 77 %. Следует подчеркнуть, что показатели SaO2 и SvO2 более значимы в оценке транспорта кислорода, чем РаО2 и PvO2. Само по себе снижение РаО2, даже ниже 60 мм рт.ст., не служит показателем развития анаэробного гликолиза. Все зависит от величины СВ, концентрации гемоглобина и капиллярного кровотока. Важным показателем в оценке транспорта кислорода является уровень лактата сыворотки крови (норма 0-2 ммоль/л), особенно в сочетании с показателями рН, РСО2 и BE.

Гипоксия не всегда имеет четкую клиническую картину. Однако клинические признаки гипоксии и данные транспорта кислорода являются на сегодняшний день определяющими. Не существует какого-либо одного критерия гипоксии. Клиническая картина гипоксии характеризуется непостоянством многих признаков. В начальной стадии гипоксия сопровождается неадекватностью поведения пациента, замедленностью мышления и речи, отсутствием цианоза. Часто отмечаются нарушения ритма дыхания, тахипноэ, тахикардия, преходящая артериальная гипертензия. При прогрессировании гипоксии внезапно могут возникнуть потеря сознания, нерегулярное дыхание, цианоз. В дальнейшем при отсутствии лечения развиваются глубокая кома, апноэ, сосудистый коллапс и остановка сердца.

Определение типа гемодинамики возможно при измерении трех важнейших параметров: СИ, ОПСС и ДНЛЖ, которое в норме равно 12- 18 мм рт.ст. (табл. 10.4).

Таблица 10.4.

В табл. 10.4 приведены не все варианты гемодинамики. Преимущество данных параметров заключается в возможности их бескровного определения. Величины СИ, ОПСС и ДНЛЖ могут колебаться в широких пределах в зависимости от способа их определения. Наиболее точные результаты у больных в критическом состоянии достигаются инвазивными методами исследования.

Как управлять гемодинамикой? Прежде всего необходимо познакомиться с законами и формулами, определяющими взаимозависимость важнейших параметров гемодинамики. Необходимо знать, что АД зависит от СВ и ОПСС. Формула, определяющая эту зависимость, может быть представлена следующим образом:

САД = СВ х ОПСС,

Где САД - среднее артериальное давление, СВ - сердечный выброс, ОПСС - общее периферическое сопротивление сосудов. СВ вычисляют по формуле:

СВ = ЧСС х УО.

В норме СВ, или МОС, равен 5-7 л/мин. УО, т.е. количество крови, выбрасываемое сердцем за одну систолу, равен 70-80 мл и зависит от объема крови, притекающей к сердцу, и контрактильности миокарда. Эту зависимость определяет закон Франка - Старлинга: чем больше наполнение сердечных камер, тем больше УО. Такое положение является правильным для нормально функционирующего здорового сердца. Понятно, что регулировать УО можно, создавая адекватный венозный приток, т.е. такой объем крови, который определяется возможностью работы сердца как насоса. Контрактильность мышцы сердца можно повысить, назначая положительные инотропные агенты. При этом нужно всегда иметь в виду состояние преднагрузки. Величина преднагрузки зависит от наполнения венозного русла и венозного тонуса. Можно уменьшить венозный тонус с помощью вазодилататоров и таким образом сократить преднагрузку. Неправильные действия врача могут резко повысить преднагрузку (например, в результате избыточной инфузионной терапии) и создать неблагоприятные условия для работы сердца. При сниженном венозном притоке назначение положительных инотропных агентов будет неоправданным.

Итак, проблема сниженного объема крови должна решаться в первую очередь адекватной инфузионной терапией. При относительной гиповолемии, связанной с вазодилатацией и перераспределением крови, лечение также начинают с увеличения объема крови, одновременно назначая средства, повышающие венозный тонус. У больных с недостаточной сократительной способностью миокарда почти всегда отмечается повышенное наполнение камер сердца, ведущее к росту давления наполнения желудочков и отеку легких. В таких клинических ситуациях инфузионная терапия противопоказана, лечение заключается в назначении средств, снижающих пред- и постнагрузку. При анафилаксии уменьшение постнагрузки ведет к снижению АД и обусловливает применение средств, повышающих тонус артериол.

СВ и АД могут быть значительно снижены при выраженной тахикардии или брадикардии. Эти изменения могут быть связаны как с кардиальными (нарушения проводимости и автоматизма), так и с экстракардиальными факторами (гипоксия, гиповолемия, влияние повышенного тонуса вагуса и др.). Если удается найти причину нарушений ритма, то этиологическое лечение этих нарушений будет наиболее правильным.

Важнейшим условием нормальной работы сердца является кислородный баланс. У сердечной мышцы, выполняющей громадную работу, чрезвычайно высок уровень потребления кислорода. Насыщение кислородом крови в коронарном синусе равно 25 %, т.е. намного меньше, чем в смешанной венозной крови. Чем больше работа сердца, тем больше потребность его в кислороде и питательных веществах. Нетрудно представить, что в неишемизированном здоровом миокарде потребление кислорода зависит от ЧСС, контрактильности, сопротивления сокращению сердечных волокон. Доставка же кислорода к сердцу обеспечивается нормальным содержанием переносчиков кислорода, т.е. гемоглобина, РаО2, 2,3-ДФГ, общим и коронарным кровообращением. Всякое уменьшение доставки кислорода или невозможность потребления кислорода (закупорка коронарной артерии) сразу же приводит к нарушению функций сердечно-сосудистой системы. Коронарный кровоток прямо пропорционален величине давления и радиусу сосуда и обратно пропорционален вязкости крови и длине сосуда (закон Хагена - Пуазейля). Эта зависимость не линейная, поскольку коронарный сосуд - не трубка с ламинарным течением. Ухудшение коронарного кровообращения и повышение КДД левого желудочка приводят к снижению кровообращения в субэндокардиальной зоне. Вязкость крови возрастает при высокой концентрации гемоглобина, высоком гематокритном числе, повышении концентрации белков (особенно фибриногена) в плазме. Уменьшая вязкость крови путем назначения кристаллоидных растворов и реологических средств, поддерживая гематокритное число на уровне 30-40 % и концентрацию плазменных белков несколько ниже нормы, мы создаем оптимальные условия для коронарного кровотока.

Метаболические потребности сердца максимально удовлетворяются в условиях аэробного гликолиза. В норме потребности миокарда в энергии обеспечиваются в основном за счет аэробного метаболизма глюкозы, в покое в основном за счет углеводов и, лишь незначительно, за счет жирных кислот. Гипоксия и ацидоз, изменения обмена калия, магния и других электролитов сопровождаются нарушением нормального метаболизма сердечной мышцы.

Для управления гемодинамикой необходим мониторинг сердечно-сосудистой системы. В условиях отделений интенсивной терапии общего профиля предпочтение следует отдавать использованию неинвазивных способов (насколько это возможно). Среди инвазивных показателей особенно важным является ДЗЛК. Гемодинамика тесно связана с функцией ЦНС, легких, почек и других органов и систем.

Туберкулез легких, особенно хронический и распространенный, как правило, сопровождается нарушениями дыхательной функции и изменениями сердечно-сосудистой системы. Они могут быть обусловлены интоксикацией, поражением легких, плевры, бронхов.Исследование функций дыхания и кровообращения обычно не имеет значения для установления нозологического диагноза, но играет несомненную роль в оценке общего состояния больного, определении лечебной тактики и особенно в решении вопросов об оперативных вмешательствах и оценке их результатов. Цель исследования состоит в выявлении возможной дыхательной, сердечно-сосудистой недостаточности и компенсаторных резервов этих систем.

Функции дыхания и кровообращения можно оценить на основании жалоб, анамнеза, физикального исследования, измерения артериального давления, электрокардиографии и рентгенологических данных. Более глубокое исследование проводят с помощью специальной аппаратуры и лабораторных методов диагностики в условиях дозированной физической нагрузки.
Для качественной и количественной характеристик нарушений дыхания существует множество методик. Важнейшими из них являются спирография, общая плетизмография, определение газов и кислотно-основного состояния крови.

Спирография состоит в графической регистрации дыхательных движений, которые отражают изменения объема легких во времени. В процессе спирографии может быть осуществлена и проба Вотчала-Тиффно для оценки трахеобронхиальной проходимости. Она заключается в определении объема воздуха, выдыхаемого больным за первую секунду форсированного выдоха после максимального вдоха (в норме не менее 70 %). В настоящее время спирографию с оценкой многих показателей функций внешнего дыхания (ФВД) производят на компьютеризированных аппаратах, позволяющих сделать исследование более простым, быстрым, не обременительным для пациента, с незамедлительным получением цифровых показателей. Общая плетизмография основана на использовании барометрического принципа. Ее осуществляют в плетизмографе тела - большой герметичной камере с постоянным объемом.
Пациента помещают в плетизмограф и регистрируют изменения объема грудной клетки во время дыхания. Плетизмография позволяет оценить растяжимость легких, сопротивление дыхательных путей потоку воздуха в условиях спокойного дыхания, рассчитать работу дыхания.

Интегральными показателями функции внешнего дыхания являются газовый состав и кислотно-основное состояние крови. При дыхательной недостаточности нормальный газовый состав крови не обеспечивается или достигается повышенной работой дыхания. Следовательно, определения газового состава крови и работы дыхания в покое и при дозированной нагрузке обычно достаточно для ответа на вопрос об отсутствии или наличии дыхательной недостаточности. При выявлении дыхательной недостаточности проводят разграничение ее рестриктивного и обструктивного типа. Рестриктивный тип обусловлен ограничением вентиляции и легочного газообмена вследствие уменьшения объема функционирующей легочной ткани, ограничения подвижности ребер, слабости дыхательных мышц, Рубцовых изменений плевры, а обструктивный - нарушением проходимости дыхательных путей.
Во многих случаях оба типа сочетаются, в связи с чем говорят о преобладании того или иного типа дыхательной недостаточности.

Нарушения деятельности сердечно-сосудистой системы при туберкулезе легких обусловлены главным образом туберкулезной интоксикацией и гипертензией в малом круге кровообращения. При электрокардиографическом исследовании интоксикация проявляется синусовой тахикардией, снижением зубца Т, нарушениями возбудимости и проводимости. Изменения в сердце, вызванные перегрузкой правого желудочка и его гипертрофией, на ЭКГ чаще выявляют при физической нагрузке в виде увеличения зубца Р во II и III отведениях с одновременным снижением зубца Т и уменьшением интервала S-T. Однако ЭКГ не всегда позволяет выявить легочную гипертензию и гипертрофию правого желудочка. Значительно большую информацию дает эхокардиография - с ее помощью можно количественно оценить состояние камер сердца и толщину их стенок..

Перельман М. И., Корякин В. А.

Исследование функций дыхания и кровообращения обычно не имеет значения для установления нозологического диагноза, но играет несомненную роль в оценке общего состояния больного, определении лечебной тактики и контроля за течением заболевания, в решении вопросов о хирургических вмешательствах и оценке их результатов.

Цель исследования состоит в выявлении возможной дыхательной, сердечно-сосудистой недостаточности и компенсаторных резервов этих систем.

Функции дыхания и кровообращения можно оценить на основании жалоб, анамнеза, физикального исследования, измерения артериального давления и рентгенологических данных. Более глубокое исследование проводится с помощью специальной аппаратуры и лабораторных методов диагностики в условиях дозированной физической нагрузки.

Для качественной и количественной характеристик нарушений функции дыхания существует множество методик. Важнейшими из них являются спирография, общая плетизмография, определение газового состава и кислотно-основного состояния крови.

Спирография состоит в графической регистрации дыхательных движений, которые отражают изменения объема легких по времени.

В процессе спирографии может быть осуществлена и проба Вотчала-Тиффно для оценки трахеобронхиальной проходимости. Она заключается в определении объема воздуха, выдыхаемого больным за первую секунду форсированного выдоха после максимального вдоха (в норме не менее 10%).

В настоящее время спирография с оценкой многих показателей функций внешнего дыхания все шире проводится на оснащенных компьютерами аппаратах, позволяющих сделать исследование более простым, быстрым, не обременительным для пациента, с немедленным получением цифровых показателей.

Общая плетизмография основана на использовании барометрического принципа. Она осуществляется в плетизмографе тела - большой герметичной камере с постоянным объемом, куда помещают пациента и регистрируют изменения объема грудной клетки во время дыхания.

Плетизмография позволяет оценить растяжимость легких, сопротивление дыхательных путей потоку воздуха в условиях спокойного дыхания и рассчитать работу дыхания.

Интегральным показателем функции внешнего дыхания является газовый состав и кислотно-основное состояние крови. Их обычно определяют микрометодом Аструпа.

При дыхательной недостаточности обычно не обеспечивается поддержание нормального газового состава крови или он достигается за счет напряжения компенсаторных механизмов внешнего дыхания. Следовательно, определение газового состава крови и функции внешнего дыхания в покое и при дозированной нагрузке достаточны для ответа на вопрос: есть ли дыхательная недостаточность?

При выявлении дыхательной недостаточности на основании анализа полученных данных проводят дифференциацию рестриктивного и обструктивного типов этого нарушения.

Рестриктивный тип обусловлен ограничением вентиляции и газообмена в легких вследствие уменьшения объема функционирующей легочной ткани, ограничения подвижности ребер, слабости дыхательных мышц, рубцовых изменений плевры, а обструктивный - нарушением проходимости дыхательных путей. Во многих случаях оба типа сочетаются, в связи с чем говорят о преобладании того или иного типа дыхательной недостаточности.

Для региональной оценки вентиляции и кровотока в легких основное значение имеют радионуклидные (радиоизотопные) методы исследования. Они основаны на ингаляционном или, чаще, внутривенном введении радиофармацевтических препаратов, меченных гамма-излучающими радионуклидами ксеноно-воздушной смеси, макроагрегатов альбумина, индия цитрата, микросфер альбумина и др.

Регистрацию распределения введенного препарата производят с помощью сцинтилляционной гамма-камеры с компьютером. При этом возможна как статическая, так и динамическая сцинтиграфия в передней, задней и боковых проекциях.

Все параметры обычно определяют в процентах соответственно делению легочных полей на верхнюю, среднюю и нижнюю зоны. Однако математическое моделирование позволяет оценивать вентиляцию и кровоток в легких также в абсолютных величинах.

Исследование регионарных функций легких радионуклидными методами необходимо проводить до рентгеноконтрастных исследований. Получаемая информация позволяет судить не только о вентиляции и кровотоке, но и о локализации, распространении процесса и тяжести изменений в легких.

Результаты сцинтиграфии сопоставляют с рентгенологическими данными.
При тебуркулезе легких нарушения деятельности сердечно-сосудистой системы обусловлены главным образом туберкулезной интоксикацией и изменениями гемодинамики малого круга кровообращения.

Наряду с измерением артериального и венозного давления во фтизиатрии наиболее широко используют электрокардиографическое исследование. Обнаруживаемые при этом синусовая тахикардия, снижение зубца Т, нарушение возбудимости и проводимости обусловлены туберкулезной интоксикацией.

Изменения в сердце, вызванные перегрузкой правого желудочка и его гипертрофией, чаще выявляются на ЭКГ при физической нагрузке, которая позволяет выявить увеличение зубца Р во II и III отведениях с одновременным снижением зубца Т и уменьшением интервала S-Т.

Следует, однако, учитывать, что ЭКГ далеко не всегда позволяет выявить легочную гипертензию и гипертрофию правого желудочка. Большую информацию о состоянии правого желудочка дает эхокардиография: с ее помощью можно точно определить гипертрофию стенки правого желудочка.



2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.